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Abstract
Despite recent advances in datacenter networks, timeouts

caused by congestion packet losses still remain a major cause

of high tail latency. Priority-based Flow Control (PFC) was in-

troduced to make the network lossless, but its Head-of-Line

blocking nature causes various performance and manage-

ment problems. In this paper, we ask if it is possible to design

a network that achieves (near) zero timeout only using com-

modity hardware in datacenters.

Our answer is TLT, an extension to existing transport

designed to eliminate timeouts. We are inspired by the obser-

vation that only certain types of packet drops cause timeouts.

Therefore, instead of blindly dropping (TCP) or not dropping

packets at all (RoCEv2), TLT proactively drops some pack-

ets to ensure the delivery of more important ones, whose

losses may cause timeouts. It classifies packets at the host

and leverages color-aware thresholding, a feature widely

supported by commodity switches, to proactively drop some

less important packets. We implement TLT prototypes using

VMA to test with real applications. Our testbed evaluation

on Redis shows that TLT reduces 99%-ile FCT up to 91.7%

on handling bursts of SET operations. In large-scale simu-

lations, TLT augments diverse datacenter transports, from

widely-used (TCP, DCTCP, DCQCN) to state-of-the-art (IRN

and HPCC), by achieving up to 81% lower tail latency.

CCS Concepts: • Networks→ Transport protocols.
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1 Introduction
Datacenter networks today are mostly built using Ethernet.

Its best-effort nature offers attractive advantages. Ethernet

scales to datacenter sizes with lower hardware cost and co-

ordination overhead than its reservation-based counterparts.

However, unfortunately packet losses due to (transient) con-

gestion became a major cause of high tail latency in produc-

tion networks [17, 27].

As an (immature) answer to this problem, the commu-

nity has experimented with “lossless” Ethernet. It eliminates

packet drops by triggering Priority-based Flow Control (PFC)

before switch buffers overflow. However, it was soon dis-

covered that it causes many side effects from mild (e.g., con-

gestion spreading and unfairness [58]) to severe (e.g., PFC

storm and even deadlock [32, 38]). Fundamentally, the Head-

of-Line (HoL) blocking nature of PFC violates the best-effort

nature of Ethernet, and thus makes large-scale networks

hard to understand and manage. Consequently, recent litera-

ture [24, 34, 56] shifts back to lossy Ethernet and designs new

mechanisms to remove PFC. However, they all require hard-

ware features that are not yet available. The requirement

of new hardware features means that legacy deployment

cannot use them, and future deployments may not adopt

them due to cost issues.

In this paper, we take a step back from the debate between

PFC (for lossless networks) and inventing new hardware

features (for lossy networks). Instead, we ask, is there a third

direction that gets the low tail latency of lossless networks,

keeps best-effort nature of lossy networks, and is compatible

with today’s hardware and existing protocols such as TCP

and RDMA over Converged Ethernet (RoCE) v2?

Our answer is positive. We note not all packet drops have

equal performance impacts. In some cases, the sender can

quickly detect and recover from a loss. In others, the sender

may suffer from a timeout. Only the latter seriously impacts

the application performance [27]. Inspired by this observa-

tion, we believe timeoutless network is the right direction to

pursue. To this end, we design TLT
1
, a new transport build-

ing block using commodity hardware. TLT ensures timeouts

do not occur with high probability, while tolerating the drops

that can be recovered with fast retransmission. This enables

TLT to keep the best-effort nature of Ethernet, while having

the tail latency of lossless networks.

At the switch, TLT ensures that congestion drops of pack-

ets whose lossesmay cause timeouts do not happenwith high

1
TLT stands for Timeout-Less Transport.
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probability, while exposing the rest to a lossy environment

and even dropping them aggressively (to leave headroom to

hold more important packets). Then TLT transport guaran-

tees loss detection and recovery succeed with very high prob-

ability. TLT only leverages features of commodity switch

hardware for deployment friendliness. TLT is designed to

be compatible with popular datacenter transport protocols,

including DCTCP and RoCEv2, with minimal modifications,

making it easier for operators to adopt.

TLT is not an independent transport protocol—instead, it

is a building block for existing and future transports. TLT

mitigates the harm caused by transient micro-bursts that

traditional congestion control often cannot control, but is

not a replacement for congestion control or loss recovery.

Finally, TLT only concerns congestion losses; losses due to

failures and problematic hardware are beyond its scope.

TLT’s design involves addressing several challenges. First,

we want “important” packets, whose losses may cause trans-

port layer timeouts, to be treated differently at the commod-

ity switches, but at the same time ensure packets are not

reordered. Second, we want to mark only a small fraction

of packets as “important”, while preserving the timeoutless

property. We do not want to overrun switch buffers with

excessive important packets. Finally, being generic is non-

trivial. Indeed, we show different strategies are required in

selecting important packets for window- and rate-based con-

gestion control protocols due to their distinct behavior. We

demonstrate TLT is applicable to diverse datacenter trans-

ports from widely-used TCP, DCTCP [17], and DCQCN [58]

to state-of-the-art protocols such as IRN [43] and HPCC [41].

Contributions. TLT is the first mechanism that uses com-

modity switches to enable timeout-less transport. TLT vir-

tually eliminates timeouts, the primary cause of high tail

latency, by making certain important packets lossless. We

demonstrate that TLT is generally applicable to many dat-

acenter transport protocols. Our extensive testbed experi-

ments and simulations demonstrate TLT drastically reduces

or even eliminates timeouts in a wide variety of realistic traf-

fic mixes. Our testbed evaluation shows TLT reduces 99%-ile

FCT (flow completion time) up to 97.2% under incast scenar-

ios. In our simulation, TLT reduces the tail latency by up to

81% in realistic workloads for DCTCP, TCP, DCQCN, IRN,

and HPCC.

2 Background and Motivation
2.1 Impact of Timeouts
Although bandwidth is plentiful in datacenters, congestion

packet losses are still not uncommon due to the prevalence

of microbursts [57] and shallow-buffered switches [23]. As

flows come and leave frequently, most congestion incidents

in datacenters are short-lived (100s of 𝜇s). Traditional data-

center congestion controls [17, 41, 42, 52, 58] require a round-

trip-time (RTT) to detect and react to congestion. Hence,

they are often too slow to react to microbursts [57], causing

timeouts that are harmful to real-time datacenter workloads,

including search [17], social networking [50], and retail.

The impact of losses depends on how fast they are recov-

ered. When packets in the middle of a message get lost, the

receiver immediately observes out-of-order arrivals. How-

ever, when the tail packet, an entire window of data or ac-

knowledgments is lost, timeouts occur. Compared to fast

recovery, timeouts are much more detrimental because re-

transmission timeout (RTO) is set conservatively to avoid

spurious retransmissions. For example, TCP sums the RTT

estimate with 4x the RTT variance to estimate RTO and has

a minimum bound. In Linux, the lowest possible minimum
RTO is 1 jiffy, which is 4 ms by default in recent kernels [9].

2.2 Using Aggressive Timeout
A seemingly straightforward solution is to use an aggressive

RTO; one may use a small minimum RTO (RTO𝑚𝑖𝑛) [54] or

even a small static RTO instead of estimating it. We present

reasons why they may not be very effective.

Traffic dynamics lead to a large estimated RTO. Va-

sudevan et al. [54] proposed using microsecond granularity

timers and 100s of microseconds RTO𝑚𝑖𝑛 to avoid incast

collapse. However, we find that, even with this solution,

the estimated RTO may be still very large because traffic in

production datacenters is volatile and bursty [57]. Today’s

datacenter switching chips [1, 4–6] use dynamic buffer allo-

cation [26] to absorb bursts, thus further increasing the range

of RTT variations. For example, Broadcom Trident II [5] has

a 12 MB shared buffer and 32 40GbE ports. During a high-

degree incast, RTT may spike to 2.4ms (12MB/40Gbps).
Transient bursts also cause queuing and processing delay in

middleboxes; the SLB in Microsoft adds a median latency of

196us, while the 90th percentile can reach 1ms [30].

We use simulations to validate this. We set RTO𝑚𝑖𝑛 to

200𝜇s. We model the shared-buffer switch and generate real-

istic workloads mixing background flows (Poisson arrival)

and incast-like foreground flows (on/off arrival). The com-

plete settings are given in §7.1. Figure 1 shows the cumulative

distributions of RTT and estimated RTO under realistic work-

loads. Though the average network utilization is only 40%,

congestion still happens when many foreground flows arrive

simultaneously. We find that more than 10% of foreground

flows have RTOs larger than 1.1ms, much larger than RTTs

(0.48ms at 90th percentile). This indicates a small RTO𝑚𝑖𝑛

is not a fundamental solution. In fact, our evaluation (§7)

shows that reducing RTO𝑚𝑖𝑛 actually produces worse results

than using PFC to make the network lossless.

Aggressive static timeouts may be harmful. Amore ag-

gressive approach is to use a small static timeout. Although

this can guarantee fast loss recovery, it seriously degrades

(DC)TCP’s throughput because upon a timeout the conges-

tion window drops to one. We run the same simulation but
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Figure 1. [Simulation] Distribution of RTT and calculated

RTO for DCTCP. RTO𝑚𝑖𝑛 is 200𝜇s.
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Figure 2. [Simulation] FCTs with fixed RTO of 160 𝜇s. Baseline

uses 4ms 𝑅𝑇𝑂𝑚𝑖𝑛 . Transport is DCTCP.

using a small fixed RTO of 160 𝜇s (twice the base RTT). Fig-

ure 2 shows flow completion times (FCTs) evaluated with

a fixed RTO, compared to the baseline using 4ms RTO𝑚𝑖𝑛 ,

when the total volume of the foreground traffic is 15%. The

160 𝜇s fixed RTO improves 99%-ile FCTs of foreground flows

by 41%. But this gain comes with a large penalty of 113%

increase in background average FCTs (and 31% degraded

goodput for background flows) due to a 51-fold increase in

timeouts.

Undesirable interactionswithnetworkdiagnosis.Amore

serious problem of aggressive RTOs is the undesirable inter-

actions with existing datacenter diagnosis systems. Network

diagnosis systems use timeouts and retransmissions as key

features [22] to infer the root cause of failures or trigger fur-

ther diagnostic actions upon detecting retransmissions [21].

Excessive spurious timeouts and retransmissions may gener-

ate many spurious alerts and interfere with diagnosis, thus

degrading network manageability.

Current production practice. Given the above reasons, to
the best of our knowledge, most datacenter network opera-

tors (including us) still use traditional conservative methods

to estimate RTO and configure minimum RTO to several

milliseconds for intra-DC traffic.

2.3 Existing Solutions
Loss recovery. Studies on loss recovery are vast, so we only
discuss a few representatives here. Tail Loss Probe (TLP) [27]

reduces timeouts by converting RTOs into fast recoveries

by transmitting a loss probe packet. IRN [43] proposes an

improved RoCE NIC design with selective retransmissions.

Existing solutions only target a specific protocol and elimi-

nate timeouts for some types of losses. TLP targets TCP, but

cannot prevent timeouts once probe packets are lost. TLP and

others suffer from timeouts when the retransmit sequence

is lost. In contrast, TLT generalizes the idea of converting

timeout into fast recovery for both TCP and RoCE-based

protocols leveraging features in commodity switches.

Priority-based FlowControl (PFC). Unlike the above best
effort solutions, PFC [8] makes networks lossless, thus elimi-

nating congestion timeouts. Even before RoCE deployments,
we have deployed PFC with TCP to mitigate incast for a latency-
sensitive online service in our datacenters. PFC is now widely

used to support RoCE deployments [32].

However, many side effects manifested when running

PFC at scale, ranging from mild (e.g., congestion spreading

and unfairness [58]) to severe (e.g., PFC storm and even

deadlocks [32, 38]). The main cause is that when PFC pauses

ingress ports, it induces collateral damage to other flows

traversing the same ingress port but destined to different

egress ports. Although congestion control [41, 42, 58] can

mitigate some issues, buffer overrun cannot be prevented,

especially when many new flows arrive simultaneously.

Novel switch support. Recent research efforts leverage

new switch features to provide rapid loss notifications.When

a switch queue fills, CP [24] drops packet payloads, but not

packet headers, thus achieving a lossless network for meta-

data. Lossless metadata gives the receiver a complete picture

of packet drops. NDP [34] further improves CP to reduce

feedback delay and mitigate phase effects [29]. FastLane [56]

enhances switches to explicitly send high-priority drop no-

tifications to sources. Although these efforts show promise,

they require modifications to switching chips [1, 4–6] and

are not readily deployable in production datacenters.

3 TLT Design Overview
Design goals. We focus on reducing tail latency of short

bursty flows, often observed from the traffic in user-facing

services (e.g., RPC messages), while having a minimal impact

on throughput. Motivated by the limitations of existing work,

our goal is to design a solution with four properties:

• Timeout mitigation: To satisfy the stringent latency

requirement of real-time applications, the scheme must

guarantee congestion packet losses are quickly recovered

without triggering timeouts with a high probability.
• Deployment friendliness: As a new switching chip of-

ten takes years to design and implement, our scheme

should leverage features of commodity switching chips

that are widely deployed in production datacenters.

• Generality: The solution should be compatible with a va-

riety of transport protocols and applicable to bothwindow-

and rate-based protocols.

• Minimal side effects:Wemust minimize the side effects,

such as congestion spreading, deadlocks, and adverse in-

teractions with underlying congestion control.

Design rationale.We observe that certain packets are more

important (e.g., last packet in the message) than others as

their losses are likely to cause timeouts. Inspired by this, we

design TLT that selects important packets at the end host

and gives these important packets preferential treatment in

35



EuroSys ’21, April 26–29, 2021, Online, United Kingdom Lim, et al.

the network such that they experience near-zero loss, while

leaving the rest of the packets subject to loss as usual. This

involves solving two main challenges:

• How to selectively droppackets inside a switch queue?
TLT gives preferential treatment to important packets and

drops unimportant ones. To make it readily deployable in

production datacenters, the color-aware dropping mecha-

nism should be implemented using commodity switching

chips without adversely impacting existing transport.

• How to select important packets? Important packets

are packets whose losses may cause timeouts. TLT should

select as few as possible packets to be important. As a

transport building block, TLT must work with various

datacenter transport protocols, including TCP and RoCE.

4 TLT Switch Design
4.1 Color Aware Dropping
A naïve approach for enabling preferential treatment to im-

portant packets is to use separate queues for important pack-

ets and unimportant packets. However, this will incur severe

reordering, causing a negative impact on transport proto-

cols. Hence, we aim to realize selective dropping inside a

switch queue. To this end, we leverage color, a feature that
is widely supported by commodity switching chips. Color is

a metadata that the chip pipeline attaches to every packet.

Most commodity switching chips (e.g., Broadcom Tomahawk

and Trident series [1, 4–6]) support three colors, red, yellow,

and green, allowing operators to assign packet colors by

programming the access control list (ACL).

A buffer threshold can be associatedwith each colorwithin

the same queue. Then the queue build-up for each color

is limited to the threshold given. This is known as color

aware dropping, originally developed for traffic metering

and quality of service (e.g., Two Rate Three Color Marker me-

ters) [16, 35, 36]. In our production datacenters, the feature

is not being used for any purpose. To our best knowledge,

we are the first to use color aware dropping in conjunction

with transport protocols to enhance their performance.

Our idea is to use color aware dropping to “reserve” room

for important packets in the egress queue. Marking unimpor-

tant packets as red, for example, and setting a color-aware

dropping threshold for red packets enable us to limit the

queue buildup for unimportant packets. To avoid dropping

important packets, TLT allows important packets to queue

beyond the color-aware dropping threshold, while limiting

the threshold for unimportant packets. We further enable

dynamic buffer allocation [26] to accommodate important

packets (see §4.2). Finally, the FIFO nature of the queue pre-

serves the ordering of packets.

4.2 Choice of the Dropping Threshold
We refer to the threshold given to unimportant packets as

the color-aware dropping threshold. When new flows arrive

in burst, we want the color-aware dropping to take effect

to throttle the queue and protect important packets because

traditional congestion control cannot take effect immediately.

During this time, color-aware dropping must offer a fast
response to short-term congestion. However, when congestion

controls reach the steady state, color-aware dropping should

not interfere or take effect. We can ensure this by setting the

dropping threshold larger than the maximum steady state
queue size. We derive the bounds for widely-used transports:

• TCP: To avoid throughput loss, the color-aware dropping
threshold must be larger than the bandwidth-delay prod-

uct (BDP), given the low degree of multiplexing of large

concurrent flows in production datacenters [17] (i.e., the

large buffer rule rather than the small buffer rule [20]).

• DCTCP: In DCTCP [17], all packets are marked if the in-

stantaneous queue length exceeds the single ECNmarking

threshold,𝐾𝐸𝐶𝑁 . At steady state [17, 18], the queue length

oscillates around 𝐾𝐸𝐶𝑁 where the amplitude of oscillation

depends on the number of concurrent flows. However,

DCTCP falls back to vanilla TCP in the presence of packet

losses. Thus, to avoid throughput loss, we should set the

color-aware dropping threshold larger than BDP [20]. The

minimum color-aware dropping threshold for DCTCP is

𝑚𝑎𝑥 (𝐾𝐸𝐶𝑁 , 𝐵𝐷𝑃) = 𝐵𝐷𝑃 since 𝐾𝐸𝐶𝑁 < BDP [17, 18, 55],

• DCQCN(+IRN):DCQCNuses RED-like probabilistic ECN

marking [58]. It has three switch parameters: minimum

threshold (𝐾𝑚𝑖𝑛), maximum threshold (𝐾𝑚𝑎𝑥 ) and maxi-

mum probability (𝑃𝑚𝑎𝑥 ). Zhu et al. [59] prove that DCQCN

has a unique fixed point queue length between 𝐾𝑚𝑖𝑛 and

𝐾𝑚𝑎𝑥 at steady state. Therefore, the color-aware dropping

threshold should be at least as large as𝐾𝑚𝑎𝑥 . Note DCQCN

does not adjust the rate when packet loss occurs.

We note, while TLT works with various transport proto-

cols, ones that use less buffer at steady state work better with

TLT since they leave larger room for important packets. We

characterize the tradeoff for a range of thresholds in §7.

When does TLT drop important packets? Using amodel

of a shared buffer switch, we characterize when a switch

buffermight overflow and drop important packets. Our result

below shows TLT ensures lossless delivery of important

packets in the vast majority of cases, except for extremes

(e.g., 10k concurrent flows at a switch).

To model a switch, we denote the total size of its buffer as

𝐵, of which 𝑈𝐵 is unallocated at a given moment; number

of ports as 𝑁 ; and the color-aware dropping threshold as

𝐾 . The switch buffer is shared by all ports using a dynamic

threshold algorithm [26], which uses the parameter, 𝛼 . An

arriving packet to egress queue 𝑖 is dropped if 𝑄𝑖 ≥ 𝛼 ×
𝑈𝐵, where 𝑄𝑖 is the length of queue 𝑖 . Assuming the switch

has𝑀 ports experiencing congestion simultaneously, each

port gets
𝛼×𝐵

1+𝑀×𝛼 [26] from the shared buffer pool and has

𝛼×𝐵
1+𝑀×𝛼 − 𝐾 to hold important packets. A large 𝛼 maximizes

buffer utilization, while a small 𝛼 favors short-term fairness

among ports [26]. We use 𝛼 to 1 to balance the trade-off.
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We now demonstrate the unlikeliness of important packet

loss using numbers from a real ToR switch. Arista 7050QX-

32 [2] (based on Broadcom Trident II [5]) with 12MB shared

buffer and 32 40GbE ports. We assume an extreme case

where half the ports (𝑀 = 16) are congested simultaneously.

Given 𝛼 = 1, each port has
1×12𝑀𝐵
1+16×1 = 705.88𝐾𝐵 buffer. For

(DC)TCP, we set the select dropping threshold 𝐾 to 400 kB

(assuming a 40Gbps network with 80 𝜇s RTT). So the per-

port buffer “reserved” for important packets is 305.88 kB.

Since TLT has at most one important in-flight packet per

flow in our design (§5), each port can hold 203 flows, result-

ing in 3248 flows in total. If only one port is congested, this

port can get 1/2 × 12𝑀𝐵 − 0.4𝑀𝐵 = 5.6𝑀𝐵 buffer to hold

important packets, thus handling up to 3,733 flows without

important packet losses. This suggests TLT can eliminate

important packet losses in the vast majority of cases in pro-

duction datacenters without using PFC. If an operator wants

to eliminate congestion timeouts under any circumstances, PFC
can be used in conjunction with TLT.

5 TLT Host Transport Design
TLT host ensures the underlying transport protocol does

not experience any timeout, assuming important packets

are not lost. To avoid important packet drop, a TLT host

should mark packets as important as few as possible. In

the following, we describe how TLT host selects important

packets for window-based (§5.1) and rate-based transports

(§5.2).

Despite the differences, there is one common mechanism:

all control packets (e.g., SYN, FIN, RST, and pure ACK in

TCP; and ACK, NACK, and CNP in RoCE) are marked as

important given their special purposes and small size.

We assume packets of a flow traverse the same network

path, as most production datacenters use Equal-Cost Multi-

Path (ECMP) for load balancing [32, 51]. Since out-of-order

delivery is very rare, the duplicate ACK or NACK threshold

is set to one to reduce retransmission latency. Note Linux

kernel implements early retransmit [19] that requires only

one duplicate ACK for fast recovery. In most commercial

RoCE implementations [10, 11], when the receiver receives

an out-of-order packet, it will send a NACK to trigger re-

transmissions immediately [32].

Finally, TLT does not explicitly deal with non-congestion

losses.When important packets are lost due to non-congestive

reasons including problematic hardware (e.g., silent packet

drops [33]) or packet corruptions, its performance falls back

to the underlying transport.

5.1 TLT with Window-based Transport
This section deals with applying TLT to window-based trans-

ports, including but not limited to TCP (and its variants such

as DCTCP [17]), HPCC [41], and IRN [43]. Protocols with a

static window also fall into this category. For example, IRN

uses a static windowwith a size of bandwidth-delay product.

Key Idea:Window-based transports use a sliding window

to bound the number of outstanding packets. Packet trans-

mission is self-clocked; an old packet leaving the network

triggers an ACK, and the ACK slides the sender’s window to

inject new packets into the network pipe. They suffer from

timeouts if self-clocking is broken or a loss happens at the

tail of a flow [27]. Thus, maintaining self-clocking is critical.

A straw man approach to keep self-clocking is to mark

the last packet of every window as important. Although this

idea seems promising, it will end up marking all packets as

important, as every newly transmitted packet is actually at

the tail of the current window at that instant.

Instead, TLT uses a novel self-clocking approach to keep

one important in-flight packet.

• When a new flow starts, the sender marks the last packet

in the initial window as Important Data.

• When the receiver receives an Important Data packet,
it sends an ACK (or SACK) immediately marked as impor-

tant like the other control packets. However, to differenti-

ate with acknowledgements for unimportant packets, we

mark this packet with a special tag, Important Echo.

• When the sender receives anACK or SACKwith Important
Echo, it means the only in-flight important data packet has

left the network, leaving self-clocking vulnerable. Hence,

it transmits another Important Data packet immediately.

This ensures there is always one in-flight important packet

(either Important Data or Important Echo) for each flow

and enables fast loss detection.

Guaranteed fast loss detection. TLT’s important packets

naturally act as a reliable indicator for loss. Every RTT, an

Important Data and an Important Echo are guaranteed

to arrive at the receiver and sender, respectively. Once the

sender receives a Important Echo, it can detect the losses of

unimportant packets sent between two important packets.

Figure 3 (a) illustrates how Important Echo serves as an

indicator. Note that SEQ N is acknowledged by ACK N+1.

There are three Important Data (SEQ 1, SEQ 3, and SEQ 6)

and three Important Echo (ACK 2, ACK 4 and the second

ACK 5) in total. When the sender receives the second ACK

5, it can tell if packet losses happen between two important

packets: SEQ 3 and 6, thus detecting the dropped SEQ 5.

Guaranteed self-clocking via importantACK-clocking.
When an ACK marked as Important Echo opens up a new

window, TLT transmits a data packet as Important Data.
However, a problem arises when the new window does not

allow any data transmission, as this prevents further ACK-

clocking. This may happen due to window reduction or no

available new data in the send buffer. Normally, in this case,

sending an extra packet may worsen congestion. However,

TLT has already reserved room for important packets at the
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Figure 4. TLT on rate-based transport marks the first re-

transmitted packet as important.

switches. So we choose to inject an important packet re-

gardless of window or buffer limit to ensure the liveness of

ACK-clocking. We call this important ACK-clocking.
Nonetheless, important packets also take up buffer space,

so we must minimize their footprint. A straightforward solu-

tion is transmitting the first sent but unacked byte. This also

avoids the loss masking problem [27] where the redundant

packet fully repairs the loss and masks it from congestion

control. However, this significantly delays loss recovery. Fig-

ure 3 (b) illustrates the problem when packet SEQ 1441 (with

payload 1441-2880) is lost. We assume SACK is enabled and

the initial window is 3. At (A), the duplicate ACK 1441 trig-

gers a retransmission, which is lost again. When the loss is

detected, TLT triggers important ACK-clocking with 1 byte

payload, which gets delivered and its ACK triggers another

important ACK-clocking. As a result, it will take 1440 RTTs

to fully recover all the lost bytes (1441 to 2880).

Thus, we use adaptive important ACK-clocking that bal-

ances the trade-off and minimize adverse interactions with

congestion control, as illustrated in Figure 3 (b).

• When an important ACK-clocking is caused by an Important
Echo that indicates any loss, the sender transmits the

first maximum segment size (MSS) worth of lost data as

Important Data to speed up loss recovery.

• When the Important Echo does not indicate any loss, the
sender transmits the first unacked byte in the window, to

minimize its footprint while ensuring the ACK-clocking.

We also design mechanisms to handle duplicated ACK gener-

ated by important ACK-clocking to prevent potential inter-

ference with congestion control. For the full algorithm and

benefits of each design choice, refer to Appendix A, which

summarizes the behavior of a TCP host implementing TLT.

Remark: Important Data and their echoes are transport

layer message types. They are sent with a network layer tag

that switches recognize as “important”.

5.2 TLT with Rate-based Transport
Rate-based transport protocols, such as DCQCN, use the

internal timers or rate-limiters to explicitly control inter-

packet transmission intervals. Commercial RoCE implemen-

tations adjust the sending rate based on advanced congestion

signal [42, 58] and perform go-back-N [32] recovery in the

presence of packet losses. TLT ensures timely loss detection

and recovery by carefully selecting important packets.

Timely loss detection. Given that rate-based transports

continuously transmit packets, we select the last packet of a

flow as important. This is because as long as the last packet

arrives at the receiver, the receiver can always detect out-of-

order arrivals (if packet losses happen) and notify the sender

to retransmit (e.g., via NACK [32]). For long flows, however,

if all unimportant packets are lost, loss detection may take

long. Thus, for each flow, we can further mark an additional

important packet in every 𝑁 transmitted packets
2
. To ensure

that important packets do not persistently overwhelm the

link capacity, 𝑁 should be larger than the fan out degree, e.g.,

the maximum number of hosts sending traffic to a receiver

simultaneously in a datacenter application.

Timely loss recovery. However, marking only the last

packet is insufficient. A loss of first retransmitted packet is a

special case we need to handle. To demonstrate the problem,

Figure 4 illustrates a flow with five packets, out of which

packets 3 and 4 are lost. TLT transmits packet 5 as important,

which generates a NACK indicating packet 3 is missing. This

in turn triggers a retransmission of packet 3, which unfor-

tunately is lost again. This triggers another NACK at the

receiver. However, after receiving the second NACK 3, the

sender cannot distinguish it from the first NACK 3 and hence

cannot determine if packet 3 is lost again. As a result, the

sender does not start a new round of retransmissions until

the retransmission timer expires. To address this, when the

rate-based transport starts a round of retransmission, TLT

host marks both the first and the last packet as important.

5.3 Discussion
TLT mitigates congestion timeouts at the cost of (unimpor-

tant) packet losses and retransmissions. For latency-sensitive

workloads, this is acceptable because TLT trades them to

avoid the most harmful important packet losses. In addition,

2
Periodic marking is optional, and is an aid for timely loss detection. Thus

we can set 𝑁 to a large value conservatively based on the coarse-grained

prior knowledge. We also find TLT is not sensitive to N, as tail FCT differs

less than 3% between N=96 and N=384 in our large scale simulations.
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unimportant packets are only proactively dropped when con-

gestion does happen, thus avoiding spurious retransmissions

which interfere with network diagnosis and management.

Impact on throughput-sensitive workloads. However,

the impact of TLT on throughput-sensitive workloads, e.g.,

data backup and replication, is complex. On the one hand,

TLT improves throughput compared to PFC. This is because

TLT proactively drops packets to avoid triggering PFC, thus

mitigating congestion spreading. On the other hand, TLT

slightly degrades throughput as it causes more packet losses

and retransmissions. Coarse-grained congestion control and

retransmissionmechanisms, e.g., go-back-N, will worsen this

problem. Therefore, the overall impact of TLT on throughput

depends on multiple factors.

To reach a deep and comprehensive understanding, we

consider more challenging scenarios in our evaluation with

a mix of latency-sensitive and throughput-sensitive traffic.

However, we note a potential alternative is to selectively

enable TLT for latency-sensitive workloads. Depending on

deployment models, operators can use multiple queues to

isolate TLT traffic at the switch and only enable color-aware

dropping on the queue with TLT traffic; or enable TLT on

dedicated clusters only running real-time applications.

Deployment in the public cloud. Our current design is

targeted to private datacenters where operators can con-

trol both host network stacks and switches. In multi-tenant

public cloud, deploying TLT is challenging as operators can-

not control tenants’ network stacks in the virtual machines.

A potential solution is using NetKernel [46] to provide a

TLT-enabled network stack as a service to tenants.

Masking packet losses. One potential problem of the

approach is masking losses, which has been identified by

TLP [27]. For example, consider a two-packet flow whose

first packet is marked important. When the second packet

gets lost, upon receiving the Important Echo of the first

packet, TLT will transmit the first byte of the second packet

(important ACK-clocking), detect the lost second packet, and

then retransmit the second packet. This process successfully

masks the packet loss from congestion control.

However, we think TLT’s masking losses does not cause

much impact for two reasons. First, TLT only masks losses,

but does not impact other congestion signals, such as ECN,

delay and INT, which datacenter congestion control mainly

relies upon. Second, this masking losses problem only hap-

pens upon meeting all of the three conditions: the last seg-
ment of the flow/message is lost, all lost segments are con-

secutive, and all lost segments reside in the window and are

subsequent to the last important packet. And even when

the loss is masked, there are no further packets to send by

the time the last segment is recovered. Thus, the ‘wrong’

congestion window does not take any effect.

Incremental deployment. We believe TLT can be de-

ployed incrementally. When TLT is partially deployed, TLT

can be used for communication between TLT-enabled ma-

chines. At the switch, we can use a dedicated queue to carry

TLT-enabled traffic and enable color-aware dropping. Note,

non-TLT packets must use a separated queue without color-

aware dropping, as it will drop the non-TLT packets (classi-

fied as unimportant), leading to performance degradation.

Holistic transport design. TLT is a building block for low-

latency datacenter transport. In this paper, we demonstrate

its generic applicability by using TLT to augment legacy

transports. We believe co-designing TLT with congestion

control algorithms is a promising direction.

6 Implementation and Testbed
End-host. We implement TLT on Mellanox Messaging

Accelerator (VMA) [12] to accelerate (DC)TCP. VMA is a

dynamically-linked user-space Linux library that transpar-

ently accelerates socket applications. Unlike RDMA, VMA

uses LwIP [28] to implement the stack in user space. Com-

pared to mTCP, VMA provides much lower latency and does
not require any application modification, thus allowing us to
run TLT with real applications.Vanilla VMA only supports ba-

sic TCP features, such as New Reno with fast retransmission

and timestamp options. We implement SACK and DCTCP

on VMA with 481 lines of code (LOC). To test 200 𝜇s RTOmin,

we also add a high resolution timer with 10 𝜇s granularity

into the time subsystem of VMA. The VMA implementation

modifies 941 LoC to implement Algorithm 1 in Appendix A.

TLT uses the DSCP field to differentiate important and

unimportant packets. We set RTOmin to 4ms unless other-

wise noted and initial window to 10, same as Linux default,

and use a Linux-like RTO calculation.

Testbed. We connect 9 servers to a 40 GbE Netberg Aurora

720 switch running Openswitch 2.0.5 [3] switch operating

system. The switch uses Broadcom Tomahawk chip that has

16MB shared buffer
3
and 32 40 GbE ports. Each server has

either a single Mellanox ConnectX-5 or ConnectX-4 40Gbps

NIC, and 4-6 physical CPU cores.

Switch configuration. For packet classification within the

switch, we associate a color to each DSCP value and map

important packets to green and unimportant to red. We en-

able dynamic buffer allocation [26], which will allocate up to

∼1.8MB buffer to a single busy port if the other ports are idle.

We set the color-aware dropping threshold to 270 KB, which

is close to BDP of our testbed. For DCTCP, we set the ECN

marking threshold to 200 KB, according to its guideline [17].

7 Evaluation
We evaluate TLT using testbed experiments and large-scale

NS-3 simulations. We briefly summarize our main findings:

3
Tomahawk has 4 memory management units (MMU), each with 4MB

buffer which is dynamically allocated within each MMU. Each egress port

is mapped to two MMUs.
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Figure 5. FCT for TCP and DCTCP. Load is 40%. 5% is fore-

ground traffic. Color-aware dropping threshold is 400 kB.

The baseline is 4ms 𝑅𝑇𝑂𝑚𝑖𝑛 .

• Our large-scale simulations (§7.1) show TLT virutally

eliminates timeouts. When TLT is applied to DCTCP and

IRN, it reduces the 99.9%-ile FCT of foreground incast

flows by up to 80.9% and 69.1% respectively.

• We characterize TLT’s performance under a wide range of

threshold setting and network load (§7.2), demonstrating

the benefit of timeout mitigation in various settings.

• In application benchmarks (§7.3), we showTLT can reduce

the maximum application-level response time by up to

91.5% and 91.7% for in-memory cache with DCTCP and

TCP, respectively.

• In testbed experiments (§7.4), we show TLT eliminates

timeouts and reduces the 99%-ile FCT by up to 96.8% for

DCTCP and 97.2% for TCP under incast scenarios.

7.1 Large-scale Simulations
We demonstrate TLT benefits a wide range of transports

from widely deployed schemes, such as DCTCP and DC-

QCN, to state-of-the-art designs, such as HPCC and IRN,

through extensive large-scale simulations. Our results show

TLT significantly reduces the foreground tail latency up to

80.9%, without harming background flows.

Settings. We use NS-3 [14] to simulate a 96-host leaf-spine

topology with 4 core switches, 12 ToR switches, and 8 servers

per ToR switch. The over-subscription ratio is 2:1. Each

link has 40Gbps capacity and 10 𝜇s latency (BDP=80 𝜇s×
40Gbps=400 kB). For RoCE (DCQCN, IRN, and HPCC), we

use 1 𝜇s latency to reflect its low-latency design. To emulate

Broadcom Trident II [5] (12 MB buffer and 32 40 GbE ports)

which is widely used in our production datacenters, we al-

locate 12 ports and 4.5MB total buffer to each switch. We

implement buffer mechanisms based on the chip specifica-

tion and set dynamic threshold parameter 𝛼 [26] to 1 so that

each egress queue can get at most 50% of shared buffer. For

RoCE evaluation, we implement TLT, SACK, IRN on the top

of HPCC’s NS-3 simulator [7]. We also extend HPCC’s INT

implementation to support 40Gbps.

Benchmarkworkloads. Based on traffic patterns observed

in our datacenters, we model a setting where incast-like fore-

ground traffic serves user-facingworkloads, while competing

with background traffic. Background flows are sent between

a pair of random sender and receiver under a Poisson process,

whose size distribution follows the “background traffic” in a

web search service [17] with an average flow size of 1.72MB.

We create 10 k background flows for each simulation. Fore-

ground flows are incast traffic from 95 senders to a single

receiver. Each sender creates 8 flows of 8 kB. The average

network utilization (load) of the links between ToR and core

is 40%. We adjust the load of foreground flows by changing

the incast frequency. Unless otherwise noted, foreground

flows take up 5% of total traffic volume.

Baselines and metrics. For TCP-based transports, we use

vanilla TCP (NewReno) and DCTCP. We evaluate their per-

formance with various different loss recovery mechanisms:

𝑅𝑇𝑂𝑚𝑖𝑛 of 4ms (Linux default, baseline in the Figure 5),

TLP [27], and 200 𝜇s (high performance timer [54]). We set

TLP’s minimum probe timeout (PTO) to 10 𝜇s. We enable

SACK and set duplicated ACK threshold to 1.

For RoCE-based transports, we choose HPCC, vanilla DC-

QCN, DCQCN with IRN, and DCQCN with SACK (IRN with-

out the static window limit). Vanilla DCQCN uses go-back-N

for loss recovery while the others use SACK. All the schemes

except for IRN use a static RTO of 4ms. For IRN, we use

1930 𝜇s (base latency plus maximum one-hop queueing de-

lay) for 𝑅𝑇𝑂𝐻𝑖𝑔ℎ as recommended [43]. For the other param-

eters, we use the recommended settings in [41, 58].

We set TLT’s color-aware dropping threshold for TCP-

based transports to 400 kB (equal to BDP). We use 200 kB

for RoCE-based transports, which is larger than the steady

queue length of DCQCN and HPCC (the recommended𝐾𝑚𝑎𝑥

of DCQCN is 200KB [58]). When we run TLT with vanilla

DCQCN, we additionally mark a packet as important for

every 96 packets, according to the largest fan-out degree

in our topology (§5.2). We run simulations five times with

different random seeds and report the average and standard

deviation of tail FCT for foreground interactive flows and

average FCT for background flows.

Result with TCP-based transports. Figure 5 shows the

tail FCT of foreground flows and average FCT of background

flows of TCP and DCTCP. We make two key observations:

First, for DCTCP, when PFC is enabled, the tail FCT of fore-

ground flows is significantly reduced compared to baseline

(13.0ms to 2.11ms), but at the cost of a significant increase

(19.3ms to 48.8ms) in the FCT of background flows. Back-

ground flows often become victims because aggressive fore-

ground flows trigger many PFC PAUSE frames, thus blocking

background flows from the same ingress port. TLT, on the

other hand, does not have this problem. With or without

PFC, the foreground tail FCTs are very similar for TLT.

Second, in lossy networks without PFC, TLT improves the

99.9%-ile tail FCT of foreground flows by 80.9% compared to

the original DCTCP (4ms 𝑅𝑇𝑂𝑚𝑖𝑛) with a slight increase in

FCT of the background. TLT also outperforms 200 𝜇s𝑅𝑇𝑂𝑚𝑖𝑛
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Figure 6. FCT for HPCC and DCQCN (vanilla, with SACK, with IRN). Load is 40%. 5% is foreground traffic. Color-aware

dropping threshold is 200 kB.
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Figure 7. # of timeouts per 1 k flows, # of PAUSE frames per 1 k flows, and the average fraction of link PAUSE time. Load is

0.4, and foreground flows takes 5% of total traffic.

in tail FCTs by up to 29.6%. In contrast, TLP is not very effec-

tive in reducing the foreground tail FCT because timeouts

can still happen once probe packets are dropped.

Note that trends of result with TCP are similar to those

of DCTCP, except that the foreground tail FCT significantly

increases with TCP+PFC. This is because TCP background

flows can fill the switch buffer to generate many PFC pause

frames, thus also blocking foreground flows.

To demonstrate TLT virtually eliminates timeouts, we

measure the number of timeouts in Figure 7 (a). DCTCP+TLT

nearly eliminates timeout. For TCP+TLT without PFC, only

0.25% of flows experience timeouts, showing the effective-

ness of our timely recovery. In contrast, using high-performance

timer caused 3.70 times more timeouts (DCTCP). TLP cuts

timeouts but 52.2% of timeouts still remain (DCTCP), ad-

versely impacting the tail FCT. Finally, for TLT with DCTCP

and TCP, the loss rate of important packets is only 1.33×10−7
and 4.30 × 10−6, explaining why timeouts are rare.

Figure 7 (b) shows the number of PFC PAUSE frames,

which TLT reduces by 27.7% for DCTCP and 93.2% for TCP.

Without TLT, PFC causes HoL blocking, thus adversely im-

pacting the FCT of background flows. Finally, Figure 7 (c)

shows the average fraction of time a link is blocked due

to PFC PAUSE. TLT reduces the blocked time by 66.7% for

DCTCP and 95.8% for TCP. This demonstrates color-aware

dropping is better than blindly ensuring a lossless network.

Result with RoCE-based transports. Figure 6 shows the
FCT results for HPCC (with SACK), DCQCN with IRN, DC-

QCN with SACK, and vanilla DCQCN. Except for IRN, we

evaluate it with and without PFC.

For HPCC, TLT reduces 99.9%-ile foreground FCT by 78.5%

and the average background FCT by 70.5%, when PFC is not

used. This is because HPCC cannot handle packet bursts in

the first RTT, despite its near zero steady queuing and fast

convergence. With PFC, TLT reduces average FCT of back-

ground flows by 20.5%, while not degrading the foreground

flows heavily. Note although HPCC was designed to be used

in lossless network, HPCCwith TLT on lossy network shows

comparable performance as in lossless network.

For IRN, TLT improves its 99.9%-ile FCT of foreground

flows by 55.62% and the average FCT of background flows by

5.92%, as TLT eliminates timeouts as shown in Figure 7 (a).

An interesting comparison is between IRN and vanilla DC-

QCN with PFC. As shown in Figure 6, Compared to RoCE

with PFC, IRN achieves comparable tail FCT for foreground

flows, and significantly improves throughput with 66.4% im-

provement on average background FCT. This is consistent

with the observation of IRN [43].

Without PFC, TLT on vanilla DCQCN reduces the 99.9%-

ile FCT of foreground flows by 69.1% while slightly increas-

ing the average background FCT only 5.60%. However, with

PFC, TLT fails to show performance gain, due to inefficient

recovery and congestion control of vanilla DCQCN. On DC-

QCN with SACK, which has better recovery, TLT reduces

the average FCT of background flows by 21.38%, by reducing

the number of pause frame by 83.5% and the paused time by

92.8% (Figure 7 b and c). This also indicates that TLT cannot
replace the need of efficient loss recovery.
Does TLT ensure timely loss recovery? We measure

packet delivery time: the time from the first transmission

trial to its ACK arrival including all retransmissions if they

happen. TLT reduces the 99%-ile latency by 22.8% and 99.9%-

ile latency by 57.6% (Figure 16 in Appendix B). Figure 16
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Figure 8. 99.9%-ile foreground FCT and average background

FCT by color-aware dropping threshold.
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Figure 9. 99%-ile foreground FCT and average background

FCT by different network load.

shows the result for DCTCP without PFC, but we observe

similar trends with other transports.

7.2 Deep Dive
In this section, we dig deeper into TLT’s design using a series

of targeted simulations.

How does the color-aware dropping threshold impact
performance? The threshold setting impacts performance

in two different directions. On the one hand, as Figure 8 (a)

shows, a smaller threshold triggersmore (unimportant) packet

drops, thus impacting throughput-sensitive long (background)

flows. On the other hand, as Figure 8 (b) shows, a larger

threshold increases the queue occupancy, thus causing more

important packet drops or PAUSE frames.

Figure 8 (a) shows the FCT of foreground and background

flows without PFC, for a wide range of threshold settings, for

DCTCP. A larger threshold increases the foreground tail FCT,

but decreases the average background FCT. If the threshold

exceeds 700 kB, we start to observe the effect of timeouts at

the tail due to important packet drops.

With PFC (Figure 8 (b)), both foreground tail and back-

ground FCT increase with a larger threshold at the beginning.

This is because, with a larger threshold, queue size grows

and PFC is triggered more often, thus adversely impacting

the background FCT. Average background FCT keeps in-

creasing with a larger threshold, but foreground tail FCT

starts to decrease after 900 kB, reversing the trend. This is

because frequent and wide-spread PAUSE triggers start to

victimize background flows so severely and give bandwidth

to foreground flows [32, 58].

How sensitive is TLT to network load? As the network

load increases, TLT tends to drop more unimportant packets,

thus causing more retransmitted packets and rate reductions.

Thus, the benefit of TLT may diminish as load increases.

Note that production datacenters typically operate at very

low loads, e.g., 99% of all links are typically less than 10%

loaded [50]. Figure 9 gives the results of tail foreground FCT

and average background FCT of HPCCwith PFC and DCTCP

with PFC. We vary the load from 10% to 60%. We find the

sensitivity to the load depends on the transport.

One line of transports, e.g., HPCC, does not reduce the

rate in the presence of losses. As shown in Figure 9 (a), when

used with HPCC, TLT +PFC keeps low tail FCTs for fore-

ground flows at all the loads, as in pure PFC. In addition,

TLT achieves consistently lower average FCT for background

flows by mitigating the HoL blocking impact of PFC. The

improvement of TLT even increases at higher loads (e.g.,

51.9% at 60% load). This is because, at high loads, the penalty

of packet retransmissions is much smaller than that of HoL

blocking. TLT achieves a good trade-off at high loads.

A second line of transports, e.g., TCP and DCTCP, re-

duces the rate upon detecting packet losses. Therefore, TLT

causes larger performance penalty. Figure 9 (b) shows that

DCTCP+PFC benefits from TLT on loads lower than 50%.

When the load is higher than 50%, TLT results in a larger

average FCT of background flows. This is because at high

loads, the penalty of packet retransmissions and throughput

losses is larger than that of HoL blocking.

How does the fraction of important packets vary? The

fraction of important packets depends on the workload and

the color-aware dropping threshold. First, we vary the work-

load by changing the ratio of incast foreground traffic up to

20%. Figure 10 shows that TLT generates only a small fraction

(3.29% by volume) of important packets without foreground

traffic. As foreground traffic increases, the fraction of the

important packet increases. This is because short foreground

flows have a higher fraction of important packets, and a

larger fraction of foreground traffic increases congestion and

cuts down the congestion window.

Second, we vary the color-aware dropping threshold while

fixing the ratio of foreground traffic to 5% in Figure 11 (a).

With a 400KB threshold, 5.90% of packets are marked as

important. A smaller color-aware dropping threshold causes

loss to a greater fraction of unimportant packets, which

triggers retransmissions marked as important.

Does TLT keep queues small? Figure 11 (b) shows the

maximum queue size with DCTCP. The ECNmarking thresh-

old is set to 200 KB following the DCTCP recommendation.

However, without TLT, the maximum queue length reaches

2.18MB due to the bursty flow arrival. In contrast, TLT ef-

fectively controls the queue size and keeps the unimportant

queue length under the color-aware dropping threshold. The

maximum total queue length is also kept 23.1% lower (with

400 kB color-aware dropping threshold) than vanilla DCTCP.
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Figure 12. [Testbed] Incast experiment on Redis.
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Note the median queue length stays near 130kB, which is

lower than the ECN marking threshold.

Additionally, Appendix B presents detailed results that

answer the questions below:

• How often are important packets dropped? TLT ex-

hibits no important packet drops to loss rate of 3.5x10
−3

under heavy churn.

• How effective is adaptive important ACK-clocking?
It achieves fast recovery comparable to full MTU trans-

mission, while using 6.9 times less bandwidth.

• Is TLT effective with different workloads? We use

three other representative datacenter workloads, and we

find that TLT delivers better performance as in §7.1.

• How does TLT works with different degree of in-
cast? TLT even works well with higher degree of incast,

lowering foreground tail FCT up to 78.9%.

7.3 Application-level Performance
TLT deals with micro-bursts that traditional congestion con-

trol cannot handle well. We verify that TLT brings perfor-

mance improvement on real application through experi-

ments using NGINX and Redis. We look at two such cases.

In-memory caches, e.g., Redis [15] and Memcached [13],

are used to reduce the number of disk I/Os. In Facebook

production environment [45], all web servers communicate

with every Memcached server in a short period of time to

satisfy user requests, thus causing incast congestion. To emu-

late this workload in our 10-node testbed, we set up a HTTP

client, eight NGINXweb servers, and a Redis node. The client

issues up to 180 requests in total at the same time, evenly

distributed toward eight web servers. We build persistent

connections between web servers and the Redis node, and

each HTTP request triggers the web server to send a set

operation with 32 KB data to the Redis node. Hence, the

requests from the web servers to the Redis node cause incast.

We vary the number of HTTP requests to control the incast

degree and measure the response time of HTTP messages.

We evaluate the application level latency by measuring the

client-perceived response time at the HTTP clients.

We enable TLT and (DC)TCP (on VMA) between web

servers and the Redis node. Figure 12 (b) and (c) respec-

tively show the average of 99%-ile HTTP response times

measured during twelve runs with (DC)TCP. The error bar

shows ±0.5×standard deviation. Both DCTCP and TCP show

very high variance, depending on howwell the requests from

web servers to the Redis node happen to be synchronized.

DCTCP supports a slightly higher degree of incast than TCP.

On the other hand, TLT supports a much higher fan-out.

Both TCP and DCTCP with TLT show very steady changes

in response time as the number of the flows increases. It

maintains a very low tail response time between 213𝜇s and

4.40ms. Themaximum response time improvement over TCP

and DCTCP is up to 91.7% and 91.5% respectively. Tail FCTs

on (DC)TCP without TLT show much larger variance as the

number of timeouts differs depending on how the flows are

synchronized, while (DC)TCP with TLT does not experience

timeouts. Note TLT slightly worsens the performance of TCP,

due to the retransmission caused by color-aware dropping

when the number of flows are small.

In-memory cache with mixed traffic. We conduct an ex-

periment that shows TLT minimizes the tail flow completion

times of latency-sensitive foreground flows, while minimiz-

ing performance degradation of throughput-sensitive back-

ground flows. For this, we generate a 8MB background flow
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Figure 14. [Testbed] Microbenchmark (Incast experiment) on VMA.

that competes with 152 foreground flows of 32 KB accessing

the Redis node from 8 servers. We report the average 99%-ile

FCTs from four runs in Figure 13. The error bar shows 1 stan-

dard deviation. We find that while DCTCP suffers from high

99%-ile FCT up to 11.3ms, DCTCP+TLT achieves 3.39ms of

99%-ile FCT (71.2% improvement), which comes with slight

decrease (5.58%) in the goodput of the background flow.

7.4 Testbed Microbenchmark Experiments
Using our testbed, we show that TLT handles bursts of small

flows without experiencing any timeout. TLT reduces tail

FCTs up to 97.2% by effectively eliminating timeout.

Microbenchmark with incast. We create incast and mea-

sure the 99%-ile FCT with VMA implementations while in-

creasing the fan out. We use a client which generates syn-

chronized requests for 32 KB of data to the other eight servers.

We measure the FCT by the time from the request is trans-

mitted to receiving all data of the response. We establish all

TCP connections before conducting each experiment run.

We report the average and standard deviation of five runs.

For a realistic baseline, we also provide measurements on

Linux kernel 5.4.0 with SACK and DCTCP.

Figure 14 (a) and (b) respectively show the 99%-ile FCT

for TCP and DCTCP implemented on VMA, customized to

have 4ms and 200 𝜇s 𝑅𝑇𝑂𝑚𝑖𝑛 . The error bar shows 1 stan-

dard deviation of the entire distribution. Figure 14 (c) shows

the CDF of FCT for TCP flows with 100 flows. Both TCP

and DCTCP cannot avoid timeouts because the burst flow

arrival renders reactive congestion control ineffective. In

contrast, TLT accommodates a higher degree incast (at least

four times as many flows) gracefully, without introducing

any timeout. It allows a flow to progress using the reserved

buffer at the switch. Note that kernel measurements show

much larger variance and high tail FCTs (beyond 90 flows).

This is because kernel TCP flows are less synchronized than

the VMA-based implementation. In Figure 14 (c), reducing

minimum RTO shows improvement on some flows, but it

does not show much improvement on 99%-ile FCT. We find

that the aggressive timeout shows unexpected high FCTs

from 96%-ile. We suspect this is because consecutive losses

of retransmitted packets cause exponential backoff in RTO.

We also measure queueing delay. The maximum queuing

delay (not shown in figure) of DCTCP was 262 𝜇s. In contrast,

DCTCP+TLT shows lower queuing delay bounded below

173 𝜇s, which is 34% lower than DCTCP.

Mixed traffic with PFC. We run an experiment with a

mix of background and foreground flows in a network that

uses PFC. We build a dumbbell topology using two switches.

For this we add a Netberg Aurora 420 switch with Broad-

com Trident II that has 12MB shared buffer, 48 10GbE + 6

40GbE ports. The link capacity between the two switches is

40Gbps. Seven hosts (senders) are attached to one switch,

and two hosts (receivers) are connected to the other. Six

senders generate total 600 flows of 32kB foreground traffic,

and the other sender generates a long-running background

traffic. We first start the background flow and observe that

the goodput closely matches the link capacity. When the

foreground flows start, however, the background flow expe-

riences performance degradation due to PFC PAUSEs. We

find that the PFC PAUSE duration is reduced from 6.24ms to

3.26ms, since TLT alleviates triggering PFC frames by keep-

ing queue short. As a result, the average goodput of TLT is

much higher than that of regular DCTCP, demonstrating the

effectiveness of TLT.

8 Related Work
“Try and backoff” congestion control. Traditional data-
center congestion control algorithms [17, 40–42, 53, 55, 58]

react to various congestion signals, e.g. ECN, delay, and

INT, to reduce queue delay, packet losses and/or PFC pause

frames. Despite their performance improvement compared

to loss-based congestion control, they still suffer from losses,

timeouts, and/or PFC storms, when many new flows arrive

simultaneously. TLT is complementary to all of them.

Credit-based transports. Recently, many credit-based dat-

acenter transports [25, 31, 34, 44, 47] are emerging. In the-

ory, they can achieve zero congestion packet losses as they

proactively allocate bandwidth (credits) to schedule packet

transmissions. However, credits allocation takes one extra

RTT, which may not be acceptable for small flows. To avoid

this delay, many solutions [31, 34, 44] actually allow packet

transmissions in the first RTT, thus still causing losses and
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timeouts. NDP [34] mitigates this by using “lossless head-

ers”, which requires hardware features that are not widely

available on commodity switches. Aeolus [37] enables credit-

based transports to use spare bandwidth to transmit the first

RTT packets. It de-prioritizes the first RTT packets using

selective dropping and uses tail probe packets to effectively

detect the first-RTT packet losses. Aeolus can only handle

losses in the first RTT while relying on proactive congestion

control [25] to eliminate the other congestion losses. TLT

and Aeolus target traditional reactive transports and credit-

based transports, respectively. Aeolus realizes selective drop-

ping by re-interpreting RED/ECN feature. In contrast, TLT

uses color-aware dropping instead as RED/ECN is used by

ECN-based congestion control to detect congestion.

Loss recovery. Vasudevan et al. [54] show that reducing

minimum RTO can mitigate incast. TLP [27] transmits re-

dundant loss probe packets to avoid timeouts. CP [24] trims

packet payloads but not packet headers to achieve rapid loss

notifications. FastLane [56] enhances switches to explicitly

send high-priority drop notifications to sources. Mittal et al.

IRN [43] propose an improved RoCE NIC design to support

selective retransmissions.

Flow control. PFC is known to cause diverse issues at

scale [32, 58]. Some efforts [38, 39, 48] have been made to

study and prevent PFC deadlocks. GFC [48] is a new flow

control which manipulates the port rate at a fine granularity.

Although the efforts show promise, they cannot change the

HoL blocking nature of PFC, thus still leavingmany problems

unsolved, e.g., congestion spreading and unfairness.

9 Conclusion
TLT presents a timeout-less transport for commodity data-

centers. We demonstrate when we prioritize the delivery of

certain packets such that they do not experience congestion

loss, we can significantly cut down the tail latency by reduc-

ing or even eliminate timeouts. We show the idea applies

to diverse datacenter transports, while minimizing undesir-

able interactions with existing transport (e.g., reordering).

Our extensive evaluation shows TLT mitigates timeouts in

conventional transport and delivers low tail flow completion

times for bursty foreground traffic, without causing any sig-

nificant adverse impact on larger background flows. Finally,

this paper does not raise any ethical concerns.
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Algorithm 1 TLT algorithm on TCP host

1: function ReceiveData(packet)

2: if packet.mark = ImportantData then
3: recvState← Important

4: else if packet.mark = ImportantClockData then
5: recvState← ImportantClock

6: TcpForwardUp(packet)

7: function ReceiveAck(packet)

8: remove ACKed (SACKed) segment from uimpQ

9: if packet.mark = ImportantEcho then
10: sendState← Important

11: else if packet.mark = ImportantClockEcho then
12: sendState← Important

13: if packet.ack < SND.UNA then return
14: TcpForwardUp(packet)

15: if recvState ≠ Idle and sendBuffer is not empty then
16: importantAckClocking()

17: function sendData(packet)

18: if TLT detects loss and sendState = Important then
19: packet← pop 1 MSS of lost segment from uimpQ

20: sendState← Idle

21: L3Transmit(packet)

22: return
23: if sendState = Important then
24: packet.mark← ImportantData

25: sendState← Idle

26: else uimpQ.push(packet)

27: L3Transmit(packet)

28: function sendAck(packet)

29: if recvState = Important then
30: packet.mark← ImportantEcho

31: recvState← Idle

32: else if recvState = ImportantClock then
33: packet.mark← ImportantClockEcho

34: recvState← Idle

35: L3Transmit(packet)

36: function importantAckClocking

37: if unimportant packet loss detected then
38: packet← pop 1 MSS from uimpQ

39: else packet← pop 1 Byte from uimpQ

40: packet.mark← ImportantClock

41: sendData(packet)

Appendix A TCP + TLT
Some window-based transports (e.g., TCP) regard duplicated

ACK as a congestion signal. However, Important Data
packets on important ACK-clocking may trigger duplicated

ACKs if earlier packets were not lost. This causes the un-

derlying congestion control to misleadingly reduce its win-

dow. To prevent this, we mark the data packet on impor-

tant ACK-clocking as Important Clock Data, and its ACK

as Important Clock Echo (recognized as “important” at

switches). If an Important Clock Echo packet whose ac-

knowledge number is no larger than the last unacked se-

quence number arrives, the sender drops it at the TLT layer

without passing it to the transport layer.

Appendix B TLT Deep Dive
Large-scale simulations in Appendix were conducted with

30% load with four 16 kB-sized foreground flows per host,

except indicated otherwise.

How often are important packets dropped? Table 1

shows the loss rate of important packets (when PFC is not

enabled). We measure this while changing the color-aware

dropping threshold and the fraction of foreground traffic.
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Figure 15. 99.9%-ile foreground FCT for various workloads.
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Figure 18. 99%-ile foreground FCT and average background

FCT by different incast degree.

Color-aware Dropping Threshold

400 kB 500 kB 600 kB

TLT +DCTCP

5% Foreground 0 0 0

10% Foreground 0 1.02 × 10−5 3.49 × 10−3

TLT +TCP

5% Foreground 8.36 × 10−7 3.4 × 10−5 1.04 × 10−4
10% Foreground 9.29 × 10−5 9.07 × 10−5 3.24 × 10−4

Table 1. Packet loss rate of important packets under various

color-aware dropping threshold with (DC)TCP.

With 400 KB threshold, DCTCP exhibits no drops. TCP has

a small loss rate, explaining the small timeouts we had in

Figure 7 (a). With a larger threshold, less room is reserved

for important packets. As a result, when the flow churn rate

gets high (i.e., when the fraction of bursty foreground traffic

increases), the loss rate for important packets increases.

Is adaptive important ACK-clocking effective? To min-

imize the adverse interaction with congestion control, TLT

performs 1-byte (re)transmission when there’s no usable

window. It reverts to a full MTU retransmission when a loss

is detected. To quantify its benefit, we compare with two al-

ternative designs: one in which we always send 1 MTU, and

the other that always sends 1 B for important ACK-clocking.

Figure 17 (a), (b), and (c) respectively show the 99.9%-ile

foreground FCT, total bytes sent by important ACK-clocking,

and the number of PFC PAUSE frames triggered. The baseline

transport is DCTCP. The full MTU transmission delivers the

best foreground tail FCT (Figure 17 (a)), but it incurs large

bandwidth overhead (Figure (b)) and thus triggers 1.25x more

frequent PFC PAUSE frames (Figure (c)). On the other hand,

1-Byte transmission makes recovery much slower (Figure

(a)), but the overhead is low. TLT takes the benefit of both—it

results in fast recovery (55 times shorter 99%-ile FCT than

1-Byte and similar to 1-MTU) while incurring 6.90 times

smaller bandwidth overhead than a full MTU transmission.

Performance under diverse workloads. We show that

TLT reduces 99.9%-ile foreground FCT up to 90.1% under

various workloads. We use three other representative data-

center workloads as background traffic while keeping the

same 8 kB incast as foreground traffic. Figure 15 shows the

tail FCT for foreground flows for four transports. We use

workloads from web search [17], web server [49], and cache

follower [49]. For (DC)TCP and IRN, we observe that TLT

gives the best performance for all workloads regardless of

the load factor. For DCQCN and HPCC with SACK, TLT is

not as good as PFC in the aspect of tail FCT of foreground

flows. This is because DCQCN and HPCC can throttle back-

ground flows to maintain low queues, thus not generating

PFC PAUSE frames to block foreground flows. Note TLT still

reduces the average FCT of background flows by up to 54.7%

(not shown in figure) compared to PFC.

Foreground trafficwith different degrees of incast. We

also demonstrate that TLT brings reduction in the 99%-ile

foreground FCT regardless of the incast degree of foreground

traffic. We use same configuration as Figure 5 and Figure 6,

but with different incast degree for foreground flows. We

vary the number of foreground flows generated from each

host at a time, from 2 to 10. For both HPCC and TCP, TLT

shows the best performance when the incast degree is high.

TLT reduces the 99.9%-ile FCT of foreground flows up to

78.9% and 67.0% for HPCC and TCP respectively.
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