
Elastic Parameter Server Load Distribution in Deep
Learning Clusters

Yangrui Chen

The University of Hong Kong

yrchen@cs.hku.hk

Yanghua Peng

The University of Hong Kong

yhpeng@cs.hku.hk

Yixin Bao

The University of Hong Kong

yxbao@cs.hku.hk

Chuan Wu

The University of Hong Kong

cwu@cs.hku.hk

Yibo Zhu

ByteDance Inc.

zhuyibo@bytedance.com

Chuanxiong Guo

ByteDance Inc.

guochuanxiong@bytedance.com

ABSTRACT
In distributed DNN training, parameter servers (PS) can be-

come performance bottlenecks due to PS stragglers, caused

by imbalanced parameter distribution, bandwidth contention,

or computation interference. Few existing studies have in-

vestigated efficient parameter (aka load) distribution among

PSs. We observe significant training inefficiency with the

current parameter assignment in representative machine

learning frameworks (e.g., MXNet, TensorFlow), and big po-

tential for training acceleration with better PS load distri-

bution. We design PSLD, a dynamic parameter server load

distribution scheme, to mitigate PS straggler issues and ac-

celerate distributed model training in the PS architecture.

An exploitation-exploration method is carefully designed

to scale in and out parameter servers and adjust parameter

distribution among PSs on the go. We also design an elastic

PS scaling module to carry out our scheme with little inter-

ruption to the training process. We implement our module

on top of open-source PS architectures, including MXNet

and BytePS. Testbed experiments show up to 2.86x speed-up

in model training with PSLD, for different ML models under

various straggler settings.
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• Computer systems organization → Cloud comput-
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1 INTRODUCTION
Recent years have witnessed the rapid development of ma-

chine learning (ML) applied in various realms of business,

science, and online services [11, 20, 27]. Due to increasing

scales of data and training models, distributed ML frame-

works, such as TensorFlow [8], MXNet [16] and PyTorch [32],

have been widely applied to expedite model convergence

with parallel training on multiple machines.

The parameter server (PS) architecture [28] is a popular

paradigm for distributed DNN (deep neural network) train-

ing, widely supported in different ML frameworks. In the PS

architecture, workers carry out model training and exchange

their model updates through a set of parameter servers (PSs),

which are responsible for maintaining different parameter

chunks in the global DNN model. Compared to another syn-

chronization paradigm, i.e., AllReduce [41], the PS architec-
ture adapts better in heterogeneous production data centers

or public clouds, where the GPU clusters are usually con-

nected with a large pool of CPUs and network bandwidth.

Further, due to its flexible synchronization schemes and good

support for both sparse training (e.g., recommendation mod-

els) and dense training (e.g., DNNmodels), many DNNmodel

training workloads in production ML clusters adopt the PS

architecture (e.g., the production multi-tenant cluster used

in our experiments).

The efficiency of workers and PSs affects training speed.

Improving worker model training has been widely studied,

in terms of mixed-precision training, graph compilation, and

gradient coding [8, 17, 21, 35, 46]. On the other hand, the

efficiency of PSs has been under-investigated. Straggler sit-

uations may well happen on the PS side as well, which sig-

nificantly slows down the training progress (Sec. 2.3), espe-

cially for synchronous training jobs. For example, delayed

parameter processing at the PSs prevents the workers from

immediately executing the forward propagation of the next

training iteration. The delay could be caused bymany factors,

e.g., heterogeneous hardware, the contention of computation

https://doi.org/10.1145/3419111.3421307
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and bandwidth on the PS side, and uneven parameter dis-

tribution among multiple PSs. In multi-tenant ML clusters

where resource contention and performance interference are

common [13], different PS processing speeds are especially

the norm (Sec. 2.3).

In this work, we seek to accelerate distributed training by

balancing PS load and mitigating PS stragglers. In current

open-source ML frameworks (e.g., MXNet and TensorFlow),

parameter assignment among PSs is imbalanced and static,

which does not change after training initialization (Sec. 2.2).

While there have been research proposals [22][38] that study

PS worker elasticity, they do not account for parameter load

imbalance. Also, in the existing literature, very few studies

have investigated PS load distribution. Optimus [35] parti-

tions parameters larger than the average size and applies

a descending best-fit algorithm for parameter assignment,

whose performance is not compared against default ones in

the ML frameworks. PS-Plus [3] considers the variance of PS

performance and uses a simulated annealing algorithm to

assign the parameters. These work do not consider param-

eter reassignment during training, while runtime straggler

issue is often (Sec. 2.3).

Dynamic PS number adjustment during the training pro-

cess is not supported in existing ML frameworks either.

When some PSs become serious stragglers, we ought to re-

move them from working nodes; when the remaining avail-

able PSs are not sufficient for timely parameter update and

exchange with workers, we shall increase PS nodes to dis-

tribute the model update/communication load. The common

approach to changing the number of PSs in a training job is

to do checkpoints of the training process [14, 35, 43], pause,

and relaunch the job with new configurations. This intro-

duces significant overhead into training. A more elastic, hot
PS scaling approach is in need.

This paper proposes PSLD, a dynamic PS load distribu-

tion scheme to mitigate PS stragglers and identify a suitable

number of PSs for the best training speed in distributed

DNN training jobs. PSLD adopts an exploitation-exploration

method to decide parameter assignment among PSs accord-

ing to their performance, and dynamically adjusts the num-

ber of effective PSs on the go. Targeting elasticity and gen-

erality, we implement PSLD on the generic PS framework

BytePS [5][26] (which supports popular distributed training

frameworks including MXNet, TensorFlow, and PyTorch), as

well as vanilla PS architectures such as MXNet PS.

We make the following contributions in developing PSLD:
▷ We observe significant training inefficiency with the

current imbalanced and static parameter assignment in rep-

resentative ML frameworks (MXNet and TensorFlow), and

identify big potential for training acceleration with better PS

load distribution in a multi-tenant cluster. We also measure

the negative impact of PS stragglers and show that dynamic

Figure 1: Parameter
server architecture.
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Figure 2: Size (in log
scale) of parameters in
VGG16 model.

parameter reassignment canmitigate such issues and provide

significant performance gain.

▷We propose a prediction-guided exploitation-exploration

approach for dynamic PS load distribution. PSLD exploits

historical profiling trace to assist in identifying a small set

of good PSs. To alleviate inaccuracy in history-based predic-

tion, it also randomly explores new PSs which can potentially

have high performance, and maintains a good balance be-

tween exploitation and exploration. It assigns parameters to

selected PSs with minimal costs, evaluated on normalized

communication time and workload percentage, to effectively

remove ‘straggler’ PSs from the working set. When the set

of good PSs cannot provide good parameter update and com-

munication performance, new PS nodes will be added.

▷We further design an elastic PS scaling module and im-

plement it on both vanilla MXNet PS and BytePS [5][26]

architectures. It achieves dynamic parameter reassignment

and PS scaling without checkpointing and restarting the

training process, with negligible overhead.

▷ We evaluate our approach with testbed experiments

training representative DNN models. The results demon-

strate training speed-up up to 2.86x as compared to MXNet’s

default parameter distribution method, and 53% as compared

to a strawman proportional parameter allocation approach

under various PS straggler settings. PSLD also mitigates real-

world straggler issues in the shared cluster and outperforms

MXNet and TensorFlow frameworks by up to 49%. As com-

pared to the checkpointing method, system overhead for PS

elasticity scaling can be significantly reduced by over 90%,

with PSLD.

2 BACKGROUND AND MOTIVATION
2.1 Inelastic Parameter Server
The PS architecture is widely adopted in today’s distributed

ML workloads, using an ML framework such as MXNet [16],

TensorFlow [8] and Petuum [47]. In the PS architecture, pa-

rameters in the global ML model are partitioned among mul-

tiple PSs, and the training dataset is split among workers

for data-parallel training (Fig. 1). In each training iteration,
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workers compute parameter updates (i.e., gradients) using
its data partition, and push gradients to different PSs that

maintain the respective model parameters. Each PS applies

received gradients to its stored parameters with an optimiza-

tion method, e.g., Stochastic Gradient Descent (SGD) [39].
Then the workers pull updated parameters from the PSs for

the next training iteration.

None of the existing (open-sourced) model training frame-

works support elastic PS scaling and parameter reassign-

ment during the training process. The common approach

for the adjustment is to save the currently trained model

definition and parameters as a checkpoint file and restart

the training with a new PS configuration from the saved

checkpoint [14, 35, 43]. However, using checkpointing to en-

able elasticity is not desirable, which involves library reload,

model rebuilding and dataset preprocessing, with minutes

of device idle time.

We would like to note that, in this work, we only consider

stragglers that can affect PS. We discuss how stragglers can

impact ML training workers in Section 8.

2.2 Imbalanced and Static Parameter
Assignment

The parameter
1
assignment across PSs is often imbalanced

and static in existing frameworks. TensorFlow [8] distributes

parameters to multiple PSs in a round-robin way (in terms

of parameter number); MXNet [16] splits parameters with

large sizes (e.g., larger than 4MB) and evenly distributes

them to PSs, while randomly assigning smaller parameters

among PSs. These default methods do not consider poten-

tially vastly different sizes of parameters, or performance

difference among PSs according to their available compu-

tation and communication capacities, in a shared cluster

with resource contention. Static assignment strategies lead

to vulnerability to runtime PS stragglers.

With the round-robin approach, sizes of parameters may

well be imbalanced among PSs. Table 1 shows the parameter

size on each PS when training the ResNet101 [23] model

with different numbers of PSs.We observe highly imbalanced

parameter sizes among PSs when the number of PSs is 3, 5, or

6. The situation is even worse when the sizes of parameters

vary significantly, e.g., in VGG16 [42] as shown in Fig. 2.

The largest parameter tensor is over 400MB, while the total

model size is 538MB.

Table 2 shows that the parameter size on each PS may also

be imbalanced, with the parameter assignment approach in

MXNet. It results from the random small parameter distribu-

tion in the scheme, which is in terms of parameter number

but not size, and leads to varying overall parameter size on

1
The "parameter" refers to the learnable weights in each DNN layer.

Table 1: Parameter allocation (number in millions) of
ResNet101 on different numbers of PSs with Tensor-
Flow

# of PSs PS1 PS2 PS3 PS4 PS5 PS6
1 44.5

2 21.6 22.9

3 2.0 29.0 13.5

4 9.9 10.3 11.7 12.7

5 8.5 7.1 9.9 12.2 6.8

6 1.0 15.2 6.8 1.0 13.9 6.7

Table 2: Parameter allocation (number in millions) of
ResNet101 on different numbers of PSs with MXNet

# of PSs PS1 PS2 PS3 PS4 PS5 PS6
1 44.5

2 22.3 22.3

3 7.5 31.1 5.9

4 10.9 11.0 11.4 11.3

5 9.7 8.8 9.0 8.3 8.7

6 3.7 15.6 3.0 3.8 15.6 2.9
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Figure 3: Training speed with different numbers of
workers/PSs in MXNet.

the PSs. To illustrate the impact of imbalanced parameter dis-

tribution, Fig. 3 shows the training speed at different numbers

of PSs/workers, where we train each model with a worker-to-

PS ratio of 1:1 (a common configuration among production

DL workloads [35]) and homogeneous PS resource configura-

tion on our testbed (Sec. 6). We observe obvious performance

degradation when training ResNet101 [23] with 3 or 6 PSs

and Inception_BN [24] with 4 or 6 PSs, due to imbalanced

PS parameter distribution in these cases. Such imbalance

significantly affects the linear scalability of training speed

when we increase the number of PSs/workers in a training

job. We observe similar issues when training other models,

such as GoogLeNet [45] and VGG16 [42].

2.3 Runtime PS Stragglers
Even when parameter assignment is balanced, the perfor-

mance of PSs varies and some PSs may become stragglers
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Figure 6: Training ResNet50model with a PS straggler.

during runtime because the current static parameter assign-

ment cannot react to resource contention and interference

in a shared cluster (e.g., interference on computing resources

and contention on shared NIC bandwidth). The performance

degradation may be transient or persistent as jobs come and

go.

We collect 100 DNN training jobs’ traces from a production

GPU cluster (see Cluster-B in Sec. 6), recording speeds of

PSs, calculated by the total size of parameters a PS handles

divided by the average gradient/parameter communication

time between the PS and workers. The jobs run on BytePS

with MXNet as the training framework. The PSs in a job run

on the same hardware configurations (4 CPU-core container

with 30GB memory). For each job, we compute the PS speed

variation by
Speedbest−Speedworst

Speedworst
. Fig. 4 shows the CDF of PS

speed variation of all jobs. We see that speeds of PSs in 60%

of the jobs vary significantly (best PS is up to 10 times faster

than worst PS).

In addition, the performance of individual PSs may vary

significantly over time. Fig. 5 shows the change of speed

variance among all PSs in a representative training job over

time. The variance fluctuates significantly and frequently

between 0.005 to 3.18.

Fig. 6 further illustrates the impact of varying PS per-

formance when training the ResNet50 model using 4 PSs,

where PS2 has inferior performance than others starting

Figure 7: PSLD workflow.

from the beginning of training and PS3 becomes a straggler

during training due to bandwidth contention. The PS speed

in Fig. 6(a) is normalized by dividing the maximal speed

among all PSs. In Fig. 6(b), when PS3 becomes a straggler,

the overall training speed of the job drops significantly by up

to 32%, as the response time for the parameter pull request

from PS3 becomes 33x more than the average response time

from other PSs (as in Fig. 6(a)). A straightforward approach

to mitigating the straggler issue is to reallocate parameters to

PSs proportionally according to their performance. Fig. 6(b)

shows that with this strawman parameter reassignment, the

training speed can catch up again and is improved by up to

60% (as compared to without parameter reassignment).

Apart from training with BytePS, we made similar obser-

vations with jobs running directly on vanilla PS architectures

(MXNet and TensorFlow). Our observations show that PS

straggler issue is an inherent problem in existing ML sys-

tems, which is nonetheless barely explored. They further

exhibit the significant potential of balanced, dynamic PS

load distribution in accelerating distributed training, which

has inspired our design of PSLD.

3 SYSTEM OVERVIEW
Our goal in designing PSLD is to provide a resilient PS ar-

chitecture and achieve expedited training, by dynamically

adjusting parameter distribution among available PSs accord-

ing to their runtime performance, and adding/removing PSs

accordingly. The workflow of PSLD is shown in Fig. 7.

To achieve balanced parameter distribution in view of

vastly different parameter sizes in a DNN (Sec. 2.2), we par-

tition large parameters according to an empirical threshold
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(e.g., into 4MB blocks).
2
The partitioned parameter blocks

are the units for parameter assignment in PSLD.
At the beginning of training, we assign partitioned param-

eter blocks in a round-robin manner to the PSs for a balanced

load. During training, the workers monitor the performance

of each PS by recording the communication time of each pa-

rameter (Sec. 4.1), and periodically report them to the PSLD
scheduler (implemented as a coordinator of all workers and

PSs). Based on the feedback from the workers, the sched-

uler checks if there is any straggler issue (Sec. 4) and then

decides whether to reassign the parameters among the PSs.

Once a PS straggler issue is detected, the scheduler applies

the PS load distribution algorithm (i.e., Alg. 3 in Sec. 4) to

calculate the new parameter assignment among the PSs, and

mitigate the influence of the straggler(s). The new parameter

assignment will then be broadcast to all workers, and the

workers will send gradients according to the new parameter

assignment in the next training iteration.

The scheduler may decide not to deploy any parameters

on particular PS(s); those PSs are essentially removed from

the training job (scale-in of PSs). On the other hand, when

the number of PSs with straggler issue is too large (i.e., more

than half of the initial number of PSs), the scheduler will add

new PS(s) into the job (scale-out of PSs) if the addition of

PS(s) leads to better training speed.

4 PS LOAD DISTRIBUTION
An efficient and dynamic PS load distribution method is in

need, to mitigate the PS straggler issues and ensure high

training performance at all times. A strawman approach

is to reallocate parameters to PSs proportionally according

to their profiled performance. However, such an approach

highly relies on the profiling results and may easily abandon

a transient PS straggler in the last scheduling round. To

avoid falling into local optimum and achieve more effective

load distribution, we design a prediction-guided exploitation-

exploration approach.

Fig. 8 describes the procedure of our PS load distribution

method. The scheduler periodically collects performance

data of each PS from workers (stage 1) and adds them to

history logs. With these data, the scheduler identifies if

there exists a straggler issue: it checks the PS speed variance

(
Speedbest−Speedworst

Speedworst
) among PSs; if the variance exceeds a

threshold (e.g., 1, as used in our experiments), the straggler

issue exists. Then the scheduler forms a superior PS set by ex-

cluding slow PSs according to Alg. 1 (stage 2). In stage 3, the

scheduler decides parameter assignment with an ϵ-greedy
policy [44]: exploitation of identified superior PS candidates

2
This is different from MXNet’s partitioning strategy, which divides the pa-

rameters larger than a threshold evenly among PSs, such that the parameter

size at each PS can be much smaller than the threshold.

Figure 8: Stages of PSLD dynamic PS load distribution
algorithm.

with probability 1 − ϵ (stage 3a) and exploration on all PS

candidates with probability ϵ (stage 3b).

4.1 Performance Profiling
Each worker measures the performance of each PS r in terms

of its gradient/parameter communication time with r and
gradient/parameter size s: Pred(r , s) = αr s + βr [40], where
αr is the transmission time per byte of parameter, and βr is
the latency component, including parameter update time and

ACK time
3
. αr and βr are decided by hardware configuration,

bandwidth availability and interference at PS r , and are not

related to parameter size s . The mean performance for a

specific PS r with parameter size s , Predmean(r , s), and its

standard error of mean (SEM), PredSEM (r , s), are computed

based on data collected from all workers.

4.2 Superior PS Set
Based on the performance measurements, we exclude a set

of PSs with low performance and potentially being the strag-

glers, and obtain a superior PS set.

Considering the randomness in PS-worker gradient/parameter

exchange time (due to variance in bandwidth availability and

computation interference), we dynamically estimate the per-

formance of each PS using a confidence bound instead of a

fixed average value producedwith collected data. Specifically,

to identify the superior PS set, we compute lower and up-

per confidence bounds Predlower (r , s) and Predupper (r , s) of
each PS’s performance, where Predlower (r , s) = Predmean(r , s)−
1.645 ∗ PredSEM (r , s) and Predupper (r , s) = Predmean(r , s) +
1.645 ∗ PredSEM (r , s).4 We find the superior PS set as the

minimal set of PSs such that the lower 90% confidence bound

of any PS not in the superior PS set is higher than the upper

90% confidence bound of any PS in the superior PS set. (Note

that the lower the communication time with a PS is, the bet-

ter the PS performs.) In other words, we are very sure that

any PS that is not included in the superior PS set is worse

3
We adopt a linear regression method based on the collected statistics.

4
Our observed profiling results follow a normal distribution, and 1.645

reflects the 90% confidence level [18].
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Algorithm 1 Produce superior PS set

1: function GetSuperiorPS(Pred, ps_set )
2: SuperiorPS = ∅, RemainedPS = ps_set , threshold =

∞, s = model size
# of PS

3: while true do
4: r = argminr ∈RemainedPS Predupper (r , s)
5: if Predlower (r , s) ≥ threshold then
6: break
7: else
8: threshold = Predupper (r , s)
9: SuperiorPS = SuperiorPS ∪ r
10: RemainedPS = RemainedPS \ r

11: if |SuperiorPS | < ScaleThreshold then
12: Start scaling-out process

13: return
14: else
15: return SuperiorPS

Algorithm 2 Exploit on the superior PS set

1: function Exploit(param, SuperiorPS , Assiдn, Pred)
2: costmin = ∞, rbest = null
3: Sassiдn =

∑
p∈Assiдn p.size()

4: ω = 1

|Super ior PS |
∑

r ∈Super ior PS Predmean(r , s)

where s is the total size of parameters on PS r
5: for r ∈ SuperiorPS do
6: Cr = {c |Assiдn(c) = r } ∪ {param}

7: Sr =
∑
c ∈Cr c .size()

8: cost = θ0
ω Predmean(r , Sr ) + θ1

Sr
Sassiдn

9: if cost ≤ costmin then
10: rbest = r
11: costmin = cost

12: return rbest

than any PS that is included. For instance, the probability

for the PS achieving the minimal communication time to be

included in the superior PS set is more than 90%.

The procedure is given in Alg. 1 (lines 3-10), where we add

the PS into superior PS set one by one according to its confi-

dence intervals (line 5), and update a threshold according to

the maximum upper confidence bound of the PS in the latest

superior PS set (line 8). The gradually increasing threshold is
used to cluster the superior PSs within 90% confidence level.

4.3 Exploitation and Exploration
We assign (partitioned) parameter blocks one by one to se-

lected PSs. For each unassigned parameter block, we select

one PS from the superior PS set according to Alg. 2 with

probability 1 − ϵ ; and select one PS to try in the entire set of

Algorithm 3 ϵ-greedy load distribution

Require: Parameters params to be assigned, available PS

set ps_set
Ensure: Assignment decisions Assiдn of all parameters

params
1: Pred = ProfilePS(ps_set)
2: Assiдn = ∅

3: SuperiorPS = GetSuperiorPS(Pred,ps_set)
4: for param ∈ params do
5: if Rand() ≤ (1 − ϵ) then
6: Assiдn[param] =

Exploit(param, SuperiorPS,Assiдn, Pred), and put

param on the corresponding PS

7: else
8: Assiдn[param] = Random(ps_set), and put

param on the corresponding PS

PSs with probability ϵ , to avoid getting stuck into a local opti-
mum. ϵ is a constant (set to 0.1 as default in our experiments)

and remains unchanged during training. The complete PS

load distribution algorithm is summarized in Alg. 3.

Our exploitation in Alg. 2 selects the best PS in the su-

perior PS set with the minimal cost. The cost includes (i)

the predicted mean communication time between workers

and the PS, and (ii) the workload on the PS. The communica-

tion time is predicted according to the profiled performance

model, as Predmean(r , Ssize ), where Ssize is the total size of
parameters on PS r based on the current parameter assign-

ment (including the parameter to be assigned). The workload

on a PS is modeled as
Ssize
Sassiдn

, the percentage of parameters

assigned to PS r where Sassiдn is the total size of parame-

ters that have been assigned to all PSs. The cost (line 8 in

Alg. 2) combines both factors with weights θ0 and θ1, while
normalizing the communication time term with ω: ω is the

average of mean communication time among the superior PS

set, such that the value is between 0 and 1; θ0 is the weight
on the predicted communication latency for the assigned

parameters and θ1 penalizes excessive assignment on this PS

(we will evaluate different ratios of θ0 and θ1 in Sec. 6).

4.4 PS Scaling
When the PS straggler issue happens in large scale, although

our algorithm in Alg. 3 strives to find the best assignment

policy over all available PSs, it may still not be sufficient to

mitigate the straggler impact due to the lack of available PSs.

In this case, the scheduler adds some new PSs to share the

workload of the existing PSs. Specifically, we enable scale-out

of PSs when the number of PSs in the superior set is less than

ScaleThreshold (line 11 in Alg. 1, set to
1

2
by default in our
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experiments), by launching one more PS (line 12 in Alg. 1),

i.e., ScaleThreshold is the minimum size of the superior set.

5 SYSTEM DESIGN AND
IMPLEMENTATION

We design PSLD to be generic over multiple ML frameworks

and PS libraries. PSLD is implemented using C++11 on BytePS,

exploiting its compatibility with different ML frameworks

(e.g., TensorFlow, PyTorch, MXNet), as well as directly on a

traditional ML framework, i.e., MXNet with the PS architec-

ture (referred to as vanilla MXNet PS).

BytePS is an open-sourced generic communication library,

which adopts Horovod’s interface to interact with multiple

ML frameworks and replaces the NCCL communication li-

brary [7] with PS library for gradient aggregation. Different

from traditional PS architecture, BytePS does not maintain

global model parameters in the PSs; the PSs are used purely

for gradient aggregation in each training iteration and send

aggregated gradients to workers, and workers use them to

update their model parameters. In this way, it saves the cost

for various optimizers’ initialization and parameter updates

for PS nodes in different ML frameworks. To embed our dy-

namic parameter reassignment in BytePS, we do not need

to migrate parameters when parameter assignment changes,

but synchronously redefine the mapping from each gradi-

ent to the responsible PS; while in the implementation on

MXNet PS, we move parameters across PSs in case of param-

eter reassignment.

The details of our PS scaling and parameter assignment

are described below.

5.1 Dynamic PS Scaling
For a running job, no existing distributed ML framework

supports dynamic scaling, i.e., adding or removing PSs during

training. The key challenge is how to efficiently re-distribute

gradients to PSs, as well as adjust the inter-connection among

the nodes. We carefully design and implement a dynamic

scaling approach to adjust PS deployment.

We demonstrate our PS scaling procedure using the ex-

ample of adding a new PS into an existing job, which can be

divided into 3 steps, as shown in Fig. 9.

1) Initialization.When a new PS node is launched, it regis-

ters itself with the scheduler by sending an “ADD_SERVER”

request message. After the scheduler accepts this request, it

assigns an ID to the new node and responds to the request

together with all workers’ connection metadata (e.g., IPs and
ports). After that, the PS starts functioning, awaiting work-

ers’ gradients and further instructions from the scheduler

(e.g., gradient reassignment).

2) PS load distribution. When the scheduler receives a

registration request, except for sending back the response to

Figure 9: Procedure of adding one PS into a distributed
training job. It includes 3 steps in total. The arrows
are the message flows between the scheduler, PSs and
workers.

the new PS, it will also predict the network performance of

the newly added PS using the average performance of the

existing PSs, and run the load distribution method (Alg. 3

in Sec. 4) to reschedule the gradient assignment based on

the current status. The new gradient assignment balances

the load among the PSs according to each PS’s performance

periodically reported by workers, so as to optimize the job

performance. The scheduler then sends the scaling command

as well as the new PS’s connectionmetadata (e.g., IP and port)
to all the workers.

3) Gradient reassignment.At each worker, upon receiving
the scaling command from the scheduler, the worker blocks

its training threads at the beginning of the new iteration,

updates the new PS’s information, and sends a gradient reas-

signment request message to the scheduler. After receiving

the request messages from all workers, the scheduler starts

parameter movement process among PSs (needed only for

PSLD’s implementation on vanilla ML framework but not on

BytePS) and broadcasts a notification to all workers for train-

ing resumption afterwards. The workers then adjust their

gradient dispatch among PSs using received new assignment

from the scheduler and unblock the training threads. The de-

tails of the gradient reassignment process will be introduced

in Section 5.2.

In case of removing a PS, the PS to be removed sends a

“DEL_SERVER” request to the scheduler. Similar steps as 2)

3) above are then carried out, and the parameters/gradients

that the removed PS was responsible for are reassigned to

other PSs, based on the load distribution algorithm (Alg. 3)

by the scheduler.
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Our scaling design can handle cases that server shutdown

is notified beforehand. For unexpected faults, PSLD still rely

on periodic parameter checkpointing. PS replication can

mitigate the straggler problem to some extent, but incur

significant extra resource consumption; besides, the replicas

themselves may become stragglers.

5.2 Dynamic Reassignment
In existing distributed ML frameworks, parameter distribu-

tion among all PSs is determined and remains unchanged

after initialization. To support parameter reassignment for

a running job without training termination, we add extra

interactions in different PS architectures.

Vanilla ML framework. Upon receiving the new reassign-

ment from the scheduler, PSs need to migrate parameters. To

retain a consistent copy of global model parameters during

the migration process, we maintain a version counter for pa-

rameters. To decide when PSs shouldmigrate parameters, the

scheduler also broadcasts a reassignment step number to all

PSs, which is calculated based on the current version counter

and round trip time between the scheduler and PSs/workers.

At each PS, when the version counter of parameters reaches

the reassignment step, the PS moves its parameters to the

destination PSs according to the parameter assignment de-

cisions received. Once parameter migration among all PSs

is completed, the scheduler notifies all workers to resume

training.

BytePS. On BytePS architecture, we add interactions with

BytePS core and low-level communication library (i.e., PS-
Lite), as shown in Fig. 10. As briefly mentioned in 5.1, the

scheduler broadcasts a reassignment response to all workers,

and the workers notify the upper layer, BytePS core, to block

the training thread at the beginning of the next iteration.

Then the BytePS layer informs PS-Lite [2], a light and effi-

cient implementation of the PS framework, to be ready to

request new gradient distribution among PSs from the sched-

uler. The scheduler responds with gradient reassignments to

workers after receiving the requests from all workers, which

maintains training synchronization and gradient distribu-

tion consistency for all workers. The workers update the

gradient-PS mapping using received reassignment strategies

and unblock the BytePS core to continue training.

The overhead of parameter migration across PSs, as in-

curred in the dynamic reassignment stage, is negligible. For

BytePS implementation, PSs are used for gradient aggrega-

tion only and do not store parameters. There is no gradient

or parameter migration across PSs, and hence the parameter

reassignment overhead is zero. For vanilla ML framework,

the overhead is negligible as parameter migration overlaps

with parameter pull response.

Figure 10: Steps for gradient reassignment in an exist-
ing job. The dark grey parts are BytePS components.
The arrows denote the interactions among compo-
nents.

6 EVALUATION
6.1 Methodology
Testbed. We employ two clusters for our evaluation experi-

ments:

• Cluster-A includes 8 GPU servers connected by a Dell

Networking Z9100-ON switch with 25Gbps peak bandwidth

between any two servers. Each server has one 8-core In-

tel E5-1660 CPU, two GTX 1080Ti GPUs, 48GB RAM, one

MCX413A-GCAT NIC, one 480GB SSD, and one 4TB HDD,

and installs NVIDIA GTX driver 384.90, CUDA 9.0, CuDNN

7.0 and NCCL 2.4.7 together on Ubuntu 14.04 LTS.

•Cluster-B is a multi-tenant production cluster with hun-

dreds of servers, each equipped with 64 CPU cores, 320GB

memory, 8 Tesla V100 GPUs without NVLinks, and 100Gbps

bandwidth between any two servers using Mellanox CX-5

single-port NICs. There are typically hundreds of ML train-

ing jobs running concurrently in this cluster.

Workload.We evaluate PSLD by training 3 representative

models, i.e., AlexNet [27], ResNet50 [23] and VGG16 [42],

with their default training datasets [1] in the MXNet frame-

work. Each worker occupies 1 GPU, and the batch sizes per

GPU for the 3 models are 32, 32, 64 samples, respectively.

Each PS runs on a 4 CPU-core container with 30GB memory.

Upon the start of a training job, we use a worker and PS ratio

of 1:1, and run in synchronous mode on our testbed.

Thresholds. By default, the parameter partition unit is 4MB;

we set ϵ = 0.1 (see Alg. 3) and θ1
θ0
= 1 (see Alg. 2). We will

conduct sensitivity experiments on these threshold/variable

values.



Elastic Parameter Server Load Distribution in Deep Learning Clusters SoCC ’20, October 19–21, 2020, Virtual Event, USA

4 6 8 10
# of Workers/PSs

0

200

400

600

800
Sp

ee
d 

(im
ag

es
/s

ec
) Straggler-free baseline

Straggler baseline
Strawman
PSLD

(a) AlexNet

4 6 8 10
# of Workers/PSs

0

500

1000

Sp
ee

d 
(im

ag
es

/s
ec

) Straggler-free baseline
Straggler baseline
Strawman
PSLD

(b) ResNet50

4 6 8 10
# of Workers/PSs

0

100

200

300

Sp
ee

d 
(im

ag
es

/s
ec

) Straggler-free baseline
Straggler baseline
Strawman
PSLD

(c) VGG16

Figure 11: Training speed with different numbers of workers per job with MXNet.

Comparison.We compare our dynamic PS load distribution

approach with the static load distribution method of vanilla

MXNet and a strawman proportional reassignment method:

• Baseline (which is the default parameter assignment

method in MXNet): It splits the parameters with large

sizes (>4MB) evenly among all PSs and randomly dis-

tributes smaller parameters among PSs.

• Strawman: It reallocates parameters to PSs proportion-

ally according to their profiled performance.

To evaluate PS scaling and parameter reassignment over-

head, we use the checkpointing method as a baseline, which

is supported in most existing distributed ML frameworks.

Metrics.We use the training speed (images/sec) as the main

performance metric. PS scaling and parameter reassignment

overhead is evaluated using the suspension time that the

procedure brings.

Straggler patterns. We produce straggler patterns as fol-

lows, together with extreme patterns providing stress tests:

• Slow PS pattern: We limit the maximum bandwidth

of certain PSs using Linux tc tool [6]. With such rate

control, communicationwith slow PSs results in longer

transmission time.

• Disrupted machine pattern: We emulate computing re-

source contention by running a disruptive process oc-

cupying CPU cores on some PSmachines, executing an

intensive computation loop. These PSs will have less

average CPU cores due to the disruptive process, result-

ing in delays for aggregating gradients from workers.

• Real-world pattern: This is the varying PS performance

in the multi-tenant production Cluster-B with re-

source contention and interference as we showed in

Fig. 4 and Fig. 5.

We use straддler intensity% to denote the percentage by

which a PS’s bandwidth or computation capacity is lowered.

By default, evaluation results are from the BytePS-based

implementation (using MXNet as the training framework),

and results from PSLD’s implementation on vanilla MXNet

PS are specified.

6.2 PS Straggler Mitigation
We first train each DNN model using a 10Gbps network

setting (available bandwidth is limited by Linux tc tool) to

emulate the typical bandwidth settings in AWS cluster (e.g.,
g3.4xlarge GPU instance) [4], on our own testbedCluster-A.

Scalability vs. speed.We limit the network bandwidth of

one PS to 1Gbps to produce a PS straggler and train eachDNN

model using different numbers of workers and PSs. Fig. 11

compares the training speed of baseline (default method in

MXNet) without any PS straggler, baseline with 1 bandwidth-

limited slow PS, strawman proportional reassignment and

PSLD (both with the PS straggler) with different starting

numbers of workers/PSs. We observe that our dynamic load

distribution method can outperform MXNet’s default pa-

rameter distribution (when PS straggler issue occurs) by

39%-286%, the straggler-free baseline by up to 68% and the

strawman reassignment by up to 53% across the 3 benchmark

models.

Fig. 11 further shows that the PS straggler can cause signif-

icant performance downgrade, especially in communication-

intensive models (AlexNet and VGG16). Although there only

exists 1 slow PS, the training speed in AlexNet, ResNet50 and

VGG16 can decrease by up to 67%, 38%, and 62%, respectively,

with static parameter allocation. By dynamically balancing

the load among all PSs, our approach can greatly mitigate

the problem and achieve improvement of 224%, 109%, and

286% for these 3 models, respectively.

The improvement of PSLD over straggler-free baseline is

mainly due to the default unbalanced parameter assignment

of the baseline method (Sec. 2.2), which leads to skewness

in parameter distribution among PSs and hence nonlinear

scalability of training speed. Besides, the commonly used

1:1 configuration of worker and PS numbers is often non-

optimal, especially when there are more than 8 workers [35].

By selecting the superior PS set, our approach reassigns most
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Figure 12: Training speed with different limited band-
width of PS stragglers (2 stragglers): 8 workers per job.
The dotted blue line denotes the results of stragger-
free baseline.
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Figure 13: Training speed with different average CPU
resources of PS stragglers (2 stragglers): 8 workers per
job. The stragglers are set according to the disrupted
machine pattern.

of the parameters to PSs with the best performance, i.e., the
number of effective PSs in use can be less than the number

of workers. In this way, PSLD further outperforms straggler-

free baseline by up to 68%, 30% and 62% for the 3 models,

respectively.

PSLD can also perform better than the strawman propor-

tional assignment, which reassigns parameters to PSs pro-

portionally to their performance. The performance of straw-

man does not differ much with PSLD when the number of

workers/PSs is small, but the difference increases when the

number grows, especially with the VGG16 model. Up to 53%,

13%, and 29% performance gain can be achieved with our

approach over the strawman reassignment for the 3 models.

The main reason lies in that we mostly exploit a set of su-

perior PSs, while the strawman approach always uses the

same number of PSs as workers. Besides, due to its propor-

tional assignment, the strawman approach is very sensitive

to the accuracy of the profiled performance of PSs, while our

approach is more robust.

Straggler variants vs. speed. Fig. 12, Fig. 13 and Fig. 14

show the training speed of straggler baseline, strawman

method and PSLD under different straggler intensities.
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Figure 14: Training speed with different numbers of
PS stragglers (1Gbps limited bandwidth for PS strag-
glers): 8 workers per job.
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Figure 15: Training speed with real-world PS strag-
glers on BytePS and MXNet PS: 8 workers per job.

We first fix the numbers of slow PSs to 2, and vary the

limited bandwidth of straggling PSs and the average CPU

resources in Fig. 12 and Fig. 13, respectively. We see that

the larger the straggler intensity is, the smaller the training

speed of the baseline method achieves, while PSLD performs

steadily and achieves up to 4.72x and 5.96x speed-up in the

worst cases in these two settings, respectively. In contrast

with PSLD, the strawman method is sensitive to the straggler

intensity (bandwidth and CPU) and has a poor performance

when the PS straggler issue is severe (up to 86% reduction

compared to PSLD).
We also evaluate PSLD with different numbers of PS strag-

glers in Fig. 14. The baseline and strawman methods perform

significantly worse as the number of stragglers increases,

while the performance of PSLD is quite stable. With 4 slow

PSs, PSLD can mitigate the PS straggler issue and achieve

3.4x and 5.5x speed-up for ResNet50 and VGG16, respectively,

as compared to the baseline and 1.7x and 2.8x, as compared

to the strawman approach.

Real-world straggler pattern. We next perform experi-

ments on the multi-tenant Cluster-B, to evaluate PSLDwith

real-world PS straggler effects, which were observed consis-

tently during our experiments (see Fig. 5). We do not inject

any synthetic PS straggler effects in these experiments, and

the average size of the superior PS set in the experiment is 7.
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a) PS architectures vs. speed. Fig. 15 shows that PSLD can

expedite training on both BytePS and vanilla MXNet PS

architectures. PSLD on BytePS produces obvious speed-up

(Fig. 15(a)) in the real-world environment, 18.4%, 19.5% and

26.1% respectively for AlexNet, ResNet50 and VGG16, as

compared to the baseline. The improvements are produced

despite rapidly-varying performance of the PSs (due to inter-

ference by other concurrent jobs), resulting from exploiting

superior PSs to reduce stragglers’ influence on training and

the exploration step for avoiding falling into local optimum.

We also observe good speed-upwhen PSLD is implemented

on MXNet PS architecture (Fig. 15(b)): 25.3% for AlexNet,

12.7% for ResNet50 and 10.9% for VGG16 (as compared to

the baseline). On the other hand, the strawman approach

cannot well handle such complicated straggler patterns, and

no obvious speed-up is observed as compared to the baseline.

PSLD outperforms the strawman by up to 21.6% on BytePS

and 9.7% on MXNet PS.

In general, PSLD can obtain more gains with BytePS than

with vanilla MXNet PS: PS straggler mitigation by PSLD
can better exploit acceleration techniques used in BytePS,

including hierarchical gradient synchronization (NCCL for

local communication among GPUs in the same machine

and push/pull for remote communication) and credit-based

preemptive scheduling [5][26][37]. Nonetheless, PSLD can

benefit vanilla PS architectures as well.

b) Comparison with TensorFlow parameter assignment. We

further compare PSLD’s performancewith TensorFlow (using

its default round-robin parameter assignment) in Cluster-B.
As shown in Fig. 16, PSLD outperforms TensorFlow by up to

49% across the three models.

Dynamic PS scaling.We evaluate the performance of our

dynamic PS scaling approach when new PSs are added to

existing jobs after detecting more than half of the PSs are

slow (Sec. 4.4). In Fig. 17, 6 out of the 8 PSs become stragglers

(bandwidth limited to 1Gbps) at 120 seconds, which leads

to a sharp decrease of training speed; after detecting the

straggler case, the scheduler launches the PS scaling process

to launch new PS(s), and the training speed can be boosted

again.

We further compare PSLD with the baseline, the straw-

man approach, and PSLD without the PS exploration module

(only retaining exploitation) in the case of transient PS strag-

glers. As shown in Fig. 18, two PS stragglers appear at 90

seconds (bandwidth limited to 1Gbps) and recover at 360

seconds (bandwidth restored to 10Gbps). After parameter

reassignment, PSLD achieves the best training speed recov-

ery/improvement, which is 2.31x of the baseline. After the

PS stragglers recover and another round of parameter re-

assignment, PSLD further improves the training speed and

outperforms the strawman approach by 34%. This is because
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Figure 17: Training
speed (VGG16) with
dynamic PS scaling: 6
slow PSs out of 8 PSs; 8
workers.
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Figure 18: Training speed with transient PS stragglers:
4 workers per job; training ResNet50.

the strawman approach does not handle transient straggler

situations well: it may assign only a few parameters to strag-

gler PSs, so that the measured communication time with

those PSs is largely affected by noise and hence not accurate,

which prevents the strawman approach from reallocating

more parameters to them when they recover. We compare

the profiling performance of transient PS stragglers between

the strawman approach and PSLD, and find the former more

unsteady due to less profiling samples (assigned parameters).

Without the exploration step, PSLD fails to identify the re-

covered PSs as well, which results in dropped performance

over time. The dropped performance of the exploration-free

PSLD is because it cannot sense straggler recovery, resulting

from no parameter assigned in the last reassignment, and

the size of the superior PS set tends to decrease with more

reassignment procedures, leading to a heavy burden on indi-

vidual PSs. It is noteworthy that the speed after the straggler

recovery is larger than that before stragglers appear, which is

due to the improvement of parameter distribution (originally

skewed) and better configuration of worker vs. PS numbers

(originally 1:1) after PSLD’s reassignment process.
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Figure 19: Sensitivity experiments for variables in
PSLD: training VGG16 in Cluster-B, 8 workers/PSs ini-
tially.
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reassignment process.

6.3 Sensitivity and overhead Analysis
Sensitivity. Sensitivity experiments for variables in PSLD’s
algorithms are conducted: a) ϵ , which determines the proba-

bility for exploration among all PSs or exploitation (1-ϵ) in

the superior PS set (Alg. 3); b)
θ1
θ0
, which represents the trade-

off between predicted communication latency and parameter

assignment size in cost calculation of superior PSs (Alg. 2);

c) parameter partition unit size; d) PS scale-out threshold

(ScaleThreshold in Alg. 1).

As shown in Fig. 19(a), the training speed improves when ϵ
is smaller than 0.1, and decreases by up to 24.3% as ϵ exceeds
0.1, due to exploring potentially inferior PSs with a larger

probability. Fig. 19(b) suggests similar results with
θ1
θ0
, where

the training speed peaks at
θ1
θ0
= 1, and fluctuates when its

value increases.

Fig. 19(c) indicates that the best partition unit is 4MB in

our experiments. Smaller partition unit size incurs more over-

head in communication (not fully utilizing the bandwidth),

while a larger block size reduces the scheduling space of our

PSLD algorithm, leading to large speed decline. As shown in

Fig. 19(d), the training speed first rises as the PS scale-out

threshold increases and reaches the peak at 1/2; further in-

creasing the threshold does not improve the performance,

duemainly to additional communication overheadwithmore

PSs.

Overhead analysis. The overhead of dynamic PS scaling

and parameter reassignment process in PSLD is shown in

Fig. 20. The overhead is evaluated by the suspended training

time during the process.

Our dynamic PS scaling suspends training in the third step

(i.e., gradient reassignment in Sec. 5) and hence its overhead

is equal to the time for applying parameter reassignment in

a running job. The majority of parameter reassignment time

comes from the execution of our load distribution algorithm

and the synchronization of workers. Fig. 20(a) shows that

the extra time cost of PSLD varies with different numbers

of workers/PSs and models, but all smaller than 2 seconds.

Larger models or more PSs lead to larger interaction time

among the scheduler, workers and PSs in the process of

dynamic reassignment.

In Fig. 20(b), we compare the overhead of PSLD with the

checkpointing approach for PS scaling and parameter reas-

signment. PSLD incurs more than 90% less delay for both

MXNet PS based and BytePS based implementations as com-

pared to the checkpointing method due to its elastic scaling

process, which saves the cost for restarting (including PS

nodes initialization, graph building, etc.).

7 RELATEDWORK
7.1 Elasticity in Distributed Learning
In recent years, a few elastic PS architectures have been pro-

posed [22][38][36]. Proteus [22] adopts an elastic PS frame-

work to exploit transient revocable resources and to reduce

training cost in a public cloud. It observes the cloud’s state

and defines three transition stages with certain thresholds

to elastically control the number of PSs and workers with

minimal use of more costly non-transient resources. Litz [38]

also targets at adapting to the changing resource availabil-

ity, where machines can be added or removed during the

execution of an ML application. The scheduler in Litz lever-

ages elasticity for faster job completion and more efficient

resource allocation. Proteus and Litz focus on exploiting dy-

namic resources in clusters but tend to replace slow workers

with new ones when encountering straggler issues, while
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our system explores the stragglers in a finer granularity

and can handle transient stragglers without simply shutting

them down. Further, Proteus and Litz do not identify the PS

straggler issue, nor consider PS parameter adjustment.

Resource elasticity has also been explored for AllReduce

architecture. Or et al. [31] present the autoscaling engine

for distributed learning on TensorFlow with Horovod AllRe-

duce communication library [41]. It detects straggler issues

by comparing each worker’s throughput with a predefined

threshold, and uses its scaling mechanism to replace the de-

tected straggler. However, this work does not investigate

the multi-tenant use case in depth, and focuses more on

elasticity than performance degradation. Besides, its sim-

ple straggler mitigation method may not be able to handle

complex straggler patterns, such as transient stragglers.

7.2 Stragglers in Distributed Model
Training

Many studies address worker stragglers in distributed ML.

Some advocate less strict parameter synchronization to mit-

igate the synchronization cost, such as Stale Synchronous

Parallel (SSP) [28], Dynamic Synchronous Parallel [48] and

Round-Robin Synchronous Parallel [15]. AD-PSGD [29] and

Hop [30] are variations of asynchronous and stale synchro-

nous training, which target communication efficiency in

heterogeneous environments. Some other studies focus on

heterogeneity-aware distributed SGD algorithms, employing

a constant learning rate for delayed gradient push in the SSP

protocol, to reduce disturbance and unstable convergence

caused by stragglers [25]. Such approaches may not provide

guarantees of training convergence, and can affect model

quality (accuracy).

Some adopt work stealing and work shedding methods to

move workload from slow workers to fast workers [9, 21].

SmartPS [19] leverages the central control on the PS and

prioritizes parameter transmission and update selectively

and proactively on the side of PS, to narrow down the gap be-

tween straggler workers and fast workers. Blacklisting [10]

is a performance variation elimination method, mitigating

straggler issues by ceasing to assign work to slow workers.

Instead of workers, we focus on the stateful PSs and ad-

dress PS straggler issues with the proposed load distribution

method.

AllReduce methods [12, 33, 34] also lack the flexibility

to tackle straggler issues, which is more challenging than

PS architecture due to the more restrictive communication

pattern between workers. There are some works focusing on

straggler issues in AllReduce [29, 30], but their methods may

lead to deadlocks and may not be able to deal with complex

straggler patterns, such as transient stragglers.

8 CONCLUDING DISCUSSIONS
We present PSLD, an elastic PS load distribution scheme to

mitigate PS straggler issues and accelerate distributed model

training. PSLD dynamically reassigns parameters across PSs

according to an exploitation-exploration method, and ad-

justs the number of PSs accordingly. We implement PSLD
on BytePS and vanilla MXNet PS architectures to support

elastic PS scaling and parameter reassignment on the go.

Our testbed experiments show that PSLD can improve train-

ing speed by up to 2.86x as compared to MXNet’s default

parameter distribution method, and 53% as compared to a

strawman proportional assignment method under various

controlled PS straggler settings. PSLD also mitigates real-

world straggler issues in the multi-tenant production cluster

and outperforms default parameter assignment approaches

in MXNet and TensorFlow by up to 49%. It enables effective

dynamic PS scaling in a running job, introducing less than

10% overhead as compared to the classical checkpointing

method.

PSLD focuses on synchronous training so far, where all

workers train a new mini-batch simultaneously and update

the model based on the gradients in the same iteration. Syn-

chronous training is the dominant deep learning mode in

production machine learning clusters, given that asynchro-

nous trainingmay not ensuremodel convergence or accuracy.

Our approach and implementation can be extended to, as

well as benefit asynchronous training jobs as well. The major

challenge is how to ensure correct gradient aggregation in

cases of parameter reassignment. A possible and practical

way is to maintain iteration steps at each worker and decide

reassignment steps for different workers using each worker’s

own iteration steps and estimated training speeds during the

scheduler’s parameter reassignment process.

PSLD targets at mitigating PS-side straggler issues, and

hence assumes that no slowdown on the worker side. Slow

workers will affect the profiling accuracy of PSs and incur

larger overhead in the process of reassignment due to larger

synchronization time. PSLD can adopt existing worker strag-

gler mitigation methods [21, 25, 28] to alleviate the influence

of slow workers, which is orthogonal to our design on PS

straggler mitigation.

Additionally, based on PSLD, there are many other re-

search directions to explore in the future, e.g., extending
PSLD with fault-tolerant training capability, considering ma-

chine monetary cost or resource quota when scaling in/out

PSs in multi-tenant clusters, and diagnosing and interpreting

the root cause of stragglers.
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