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ABSTRACT

Training Deep Learning (DL) model requires multiple resource

types, including CPUs, GPUs, storage IO, and network IO. Advance-

ments in DL have produced a wide spectrum of models that have

diverse usage patterns on different resource types. Existing DL

schedulers focus on only GPU allocation, while missing the oppor-

tunity of packing jobs along multiple resource types.

We present Muri, a multi-resource cluster scheduler for DL work-

loads. Muri exploits multi-resource interleaving of DL training jobs

to achieve high resource utilization and reduce job completion time

(JCT). DL jobs have a unique staged, iterative computation pattern.

In contrast to multi-resource schedulers for big data workloads that

pack jobs in the space dimension, Muri leverages this unique pattern

to interleave jobs on the same set of resources in the time dimension.

Muri adapts Blossom algorithm to find the perfect grouping plan

for single-GPU jobs with two resource types, and generalizes the

algorithm to handle multi-GPU jobs with more than two types. We

build a prototype of Muri and integrate it with PyTorch. Experi-

ments on a cluster with 64 GPUs demonstrate that Muri improves

the average JCT by up to 3.6× and the makespan by up to 1.6× over

existing DL schedulers.
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1 INTRODUCTION

Deep learning (DL) has been increasingly integrated into data-

centric Internet applications and services [8, 20]. Training DL mod-

els has become an important workload in datacenters. Enterprises
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build GPU clusters to run DL training jobs. Users submit DL train-

ing jobs to the cluster, and the cluster scheduler schedules jobs and

allocates resources for high cluster and job efficiency.

While existing efforts have made significant progress in DL

scheduling [15, 36, 44, 45], a major limitation is that most DL sched-

ulers only pay attention to GPU allocation. A key underlying as-

sumption in these schedulers is that GPUs are the bottleneck in

DL training jobs, and thus they only need to consider GPUs when

scheduling jobs, without comprehensively taking into account other

resource types. However, in practice, DL training requires multiple

types of resources, including

• Storage IO from local or remote storage for reading training data

into workers;

• CPUs for preprocessing and simulations (e.g., in reinforcement

learning);

• GPUs for forward and backward propagation; and

• Network IO for gradient synchronization between workers in

distributed training.

It is true that for many early DLmodels (e.g., ResNet [16]), GPUs are

the bottleneck inmodel training—this is why existing DL schedulers

focus on GPU allocation.

However, this assumption no longer holds with the recently fast

development of DL. Now there is a wide spectrum of DL models

that vary dramatically in model sizes and types. Training different

DL models has different resource requirements and is bottlenecked

on different resource types. GPUs are not the only bottleneck re-

sources. Other resources can become the bottleneck as well for

many DL training jobs. For example, the rising need for deploying

DL applications in edge devices for Internet of Things (IoT) sce-

narios attracts research in tiny DL models [17, 23, 48]. Training a

tiny model is fast on the GPU, and is usually bottlenecked on the

storage IO, i.e., reading samples from the storage is not fast enough

to saturate the GPU [31, 33]. Training reinforcement learning (RL)

models relies on CPUs for simulations [5, 32], e.g., simulating a

robot and the environment when training a robot control policy.

Simulations can take a longer time than performing neural net-

work computation on the GPU, making CPUs the bottleneck. For

distributed training jobs for large DL models, it is common that the

network IO is the bottleneck. In some cases, 90% of the training

time is spent on networking for gradient synchronization [20, 37].

Scheduling DL training jobs based on only GPUs leaves resources

far from fully utilized (§2).

In this paper, we proposeMuri, a multi-resource cluster scheduler

for DL workloads that exploits the opportunity of multi-resource

interleaving to achieve high resource utilization and reduce job

completion time (JCT) for DL workloads. Different from existing DL

schedulers, Muri exploits multiple resource types for high overall

resource utilization when scheduling DL training jobs. When a
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training job is bottlenecked on one resource type, the resources of

other types are underutilized and can be allocated to other jobs. The

key idea of Muri is to interleave multiple jobs that are bottlenecked

on different resource types to efficiently utilize resources, reduce

job queueing time and thus reduce JCT.

Multi-resource scheduling has been taken into consideration by

cluster schedulers for big data workloads (e.g., Spark jobs) in the

past [12, 13, 26, 35]. However, since big data jobs are diverse, prior

multi-resource schedulers typically use themaximum usage of each

resource type as the demand of each job, and allocate resources to

jobs in space. The resources allocated to a job are not shared with

others when the job is running.

Our key observation is that DL training jobs have a unique

staged, iterative computation pattern that enables fine-grained

multi-resource interleaving in time. Specifically, a DL training job

consists of many iterations, each of which is composed of a se-

quence of stages like data loading, preprocessing, forward and

backward propagation, and gradient synchronization. Every single

stage typically highly utilizes one particular resource type, which

enables multiple jobs to be packed on the same set of resources

by interleaving different stages of different jobs. Because of the

iterative computation pattern, such packing decisions only need to

be done at the job level, which lowers the scheduling overhead of

fine-grained packing and makes it feasible.

The primary technical challenge of Muri is to maximize the in-

terleaving efficiency in the presence of multiple resource types and

multi-GPU jobs. For the basic case of single-GPU jobs, we formulate

the problem as a k-dimensional maximum weighted matching prob-

lem. This problem can be solved with Blossom algorithm to find

the perfect matching strategy for two resource types. We design a

multi-round algorithm based on Blossom algorithm to handle more

than two resource types. For multi-GPU jobs, a job may belong to

different packing groups on different GPUs, and the interaction

between intra-job worker synchronization and inter-job interleav-

ing introduces additional packing overhead. The algorithm avoids

cross-group packing to minimize the packing overhead.

Multi-resource interleaving is distinct from recent work onmulti-

resource pipelining for DL training [20, 31, 37]. The latter focuses

on overlapping the resource usage of different stages of the same

job, e.g., overlapping gradient synchronization (network) and for-

ward propagation (GPU) in ByteScheduler [37] and BytePS [20].

The resources can still be underutilized with intra-job pipelining,

when a job is bottlenecked on a particular resource type (e.g., low

GPU utilization for jobs with high communication to computation

ratio) or cannot fully overlap the usage of different resource types

(e.g., due to data dependencies). The key novelty of Muri is that it

introduces inter-job interleaving that overlaps the resource usage

of different jobs. Muri uses inter-job interleaving to increase the

overall resource utilization of a cluster when scheduling many jobs

to improve makespan and JCT.

In summary, we make the following contributions.

• We identify the opportunity of interleaving DL training jobs on

the usage of multiple resource types.

• We design a novel scheduling algorithm based on Blossom al-

gorithm that considers the multi-resource usage of each job to

group jobs to maximize the interleaving efficiency.

Figure 1: Benefits of multi-resource interleaving compared

with multi-resource packing. (a) Multi-resource packing can

not pack jobs when the peak usage of at least one resource

type is high. (b) Multi-resource interleaving can interleave

jobs over time to run multiple jobs concurrently.

• We propose Muri, a cluster scheduler for DL workloads that

exploits multi-resource interleaving and build a prototype of

Muri. Experiments on a cluster with 64 V100 GPUs show that

Muri improves the average JCT by up to 3.6×, makespan by up to

1.6×, and tail JCT by up to 3.8× over existing DL schedulers [15,

25, 45]. Trace-driven simulations on larger traces show that Muri

improves the average JCT by up to 6.1×, makespan by up to 1.6×,

and tail JCT by up to 5.4×.

Open-source. The code of Muri is open-source and is publicly

available at https://github.com/Rivendile/Muri.

2 MOTIVATION

2.1 Limitations of Existing DL Schedulers

Many DL schedulers have been proposed for DL training work-

loads [15, 36, 44, 45]. It is known that Shortest Job First (SJF) and

Shortest Remaining Time First (SRTF) canminimize the average JCT

when the running time is known [36], and Least Attained Service

(LAS) and Gittins index are effective when the running time is un-

known [15]. Several DL schedulers [15, 18] extend these algorithms

to schedule DL training jobs by considering the number of GPUs

used by each job and the placement preferences that are important

to the throughput of distributed training. For example, Tiresias [15]

extend SRTF, LAS, and Gittins index to Shortest Remaining Service

First (SRSF), 2D-LAS, and 2D-Gittins index, respectively, for DL

job scheduling. These solutions exclusively allocate GPUs to a job

when the job is running.

Some recent work [34, 44, 45] has explored GPU sharing for DL

scheduling. This is effective when GPUs are the only resources used

in DL jobs. However, as DL jobs use a variety of resource types and

different jobs are bottlenecked on different resource types, only

considering GPU sharing can even degrade performance. We use

an example to illustrate the limitation of only considering GPU
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Model Load Data Preprocess Propagate Synchronize

ShuffleNet [24] 60% 18% 6% 2%

VGG19 [41] 24% 4% 26% 41%

GPT-2 [39] 0.06% 0.03% 85% 28%

A2C [28] 0% 91% 3% 0.2%

Table 1: DL models have various duration percentage of each

stage in one iteration. The models are executed on two ma-

chines and 16 V100 GPUs.

sharing. Suppose we have two jobs, and the running time for each

job is 1 time unit. Without GPU sharing, we use First-In-First-Out

(FIFO) to schedule these jobs. One job finishes in 1 time unit; the

other job waits for 1 time unit and uses 1 time unit to run, i.e., its

JCT is 2 time units. The average JCT is (1+2)/2 = 1.5 time units.

Suppose the two jobs can fit in one GPU, but they contend on other

resources (e.g., storage IO). Hence, their running speed is only half

when they run concurrently. With GPU sharing, the JCT for each

job becomes 2 time units. Thus the average JCT is 2 time units,

which is even worse than running them separately.

2.2 Opportunities and Challenges

Opportunity: multi-resource interleaving. DL training jobs use

multiple resource types and the usage pattern is staged. Table 1

shows the duration percentages of four popular DL models. We ex-

ecute these models on two machines and 16 V100 GPUs. We utilize

PyTorch Profiler to record the type, duration, and resource type of

each operator. We calculate the duration percentage by dividing

the time of each stage by the duration of one iteration. Note that

the sum of the duration percentage of four stages in one DL model

may not be 100% mainly due to two reasons. First, a DL training job

overlaps different stages to reduce the duration of one iteration, e.g.,

overlapping the back propagation and gradient synchronization.

Therefore, the sum of the duration percentages may be larger than

100%. Second, there are some idle time between stages, e.g., CUDA

scheduler may delay the execution of computation kernels. The idle

time increases the duration of one iteration, which leads to a smaller

sum of the duration percentages. The profiling results confirm that

each stage mainly uses one resource type, i.e., storage IO for data

loading, CPU for preprocessing, GPU for forward and backward

propagation, and network IO for gradient synchronization. Besides,

Table 1 illustrates that different DL models are bottlenecked on

different resource types rather than only GPUs.

There are two aspects of sharing opportunities, i.e., space sharing

and time sharing. First, for each resource type, when a job cannot

utilize one type of resources fully, it can share the resources with

other jobs. The resources of one type can be divided into multiple

parts, and each job owns one part, i.e., space sharing. Second, across

resource types, DL training jobs can interleave with each other to

share different resources across time, i.e., time sharing. Even when a

DL training job highly utilizes one type of resources (e.g., GPUs), it

may not use the resources all the time (e.g., low GPU utilization dur-

ing data loading, preprocessing, and gradient synchronization). By

carefully shifting the stages of the jobs, multiple jobs can interleave

the usage of different types.

Multi-resource scheduling has been studied in cluster scheduling

for big data workloads (e.g., Spark jobs) [12, 13, 26]. However, prior

multi-resource scheduling solutions only perform coarse-grained

Figure 2: Benefits of multi-resource interleaving when each

job has already applied intra-job pipelining. The example

uses two resources for simplicity.

multi-resource packing in space. Because big data jobs are diverse,

they use the maximum usage of each resource type as the demand

for each job when making scheduling decisions, and do not run

jobs concurrently on the same set of resources.

We exploit the unique staged, iterative computation pattern of

DL training jobs that enables fine-grained multi-resource inter-

leaving in time. Figure 1 illustrates the benefits of multi-resource

interleaving. There are four jobs, which are A, B, C, and D. The

figure plots the resource usage of one iteration of each job. The four

jobs are bottlenecked on different resource types. If the resources

are allocated exclusively to them, only one job can run each time.

Multi-resource packing cannot pack jobs when the peak usage of

at least one resource type is high. It has to run the four jobs sep-

arately, as shown in Figure 1(a). On the other hand, as shown in

Figure 1(b), by interleaving the usage of different resource types,

the four jobs can overlap and run concurrently, which increases

resource utilization and improves the throughput by 4× compared

to running them separately.

Because the computation of each job is iterative, the scheduling

decision for multi-resource interleaving only needs to be made once

at the job level and then the jobs can use the interleaving plan to

run for many iterations, which lowers the scheduling overhead and

makes such scheduling policy feasible to be done for a cluster with

a large number of jobs. Yet, realizing this idea needs to address

several technical challenges.

Multi-resource interleaving vs. pipelining. Figure 1 shows an

ideal case to illustrate the idea and benefits of multi-resource inter-

leaving. In practice, a DL training job adopts pipelining to overlap

the usage of different resources [20, 31, 37]. For example, it is com-

mon to prefetch the training samples of the next batch when train-

ing the current batch (i.e., pipeline storage IO and GPU) and overlap

gradient synchronization with forward and backward propagation

(i.e., pipeline network IO and GPU). We remark that the ideas of

multi-resource pipelining in existing work and multi-resource inter-

leaving in this paper are orthogonal, where multi-resource pipelin-

ing exploits the intra-job aspect and multi-resource interleaving
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Model ShuffleNet A2C GPT2 VGG16

Bottleneck Storage CPU GPU Network

Seperate Tput 2041 1811 134 890

Sharing Tput 1756 878 55 220

Norm. Tput 0.86 0.48 0.41 0.25

Total Norm. Tput 2.00

Table 2: An example to demonstrate the benefits of multi-

resource interleaving. The throughputs represent the trained

samples per second.

exploits the inter-job aspect. Importantly, the resources are still

underutilized with intra-job pipelining, when a job is bottlenecked

on a particular resource (e.g., low GPU utilization for jobs with high

communication to computation ratio) or cannot fully overlap the

usage of different resources (e.g., due to data dependencies). For

example, network is underutilized for job A in Figure 2(a), and GPU

is underutilized for job B in Figure 2(b). Interleaving job A and B

as in Figure 2(c) can improve the throughput by 11/6.5 = 1.7× in

comparison with running them separately.

We note that the case in Figure 2 is still simplified in that each

resource type is either used or unused. In reality, some resource

types (e.g., CPUs) are used in the entire training process with vary-

ing utilization (e.g., high CPU utilization in data preprocessing and

low CPU utilization in training). The key point is to interleave the

stages when different types are highly utilized across jobs.

Example. To demonstrate the potential of multi-resource interleav-

ing, we consider four training jobs that train ShuffleNet, A2C, GPT2,

and VGG16, respectively. The batch sizes and datasets are listed in

Table 3. Each machine is configured with eight NVIDIA Tesla V100

GPUs, two Intel Xeon(R) Platinum 8260 CPUs, and a Mellanox CX-5

single-port NIC. The training data is stored locally. Training four

jobs are performed on 16 GPUs. These four jobs are bottlenecked

on different resource types: storage IO for ShuffleNet, CPU for

A2C, GPU for GPT-2, and network IO for VGG16. Table 2 lists the

throughputs when they are trained separately and together. When

the four jobs are running together with multi-resource interleaving,

we calculate the normalized throughput, i.e., the throughput when

running concurrently divided by the throughput when running sep-

arately for each job. We sum the normalized throughputs of the four

jobs, which is 2×, indicating a speedup of 2× with multi-resource

interleaving. It does not achieve 4× because the per-iteration times

of the four jobs are different, and the four jobs cannot fully overlap

different stages. Yet, it demonstrates the potential of improving job

scheduling with multi-resource interleaving.

Note that multi-resource interleaving does not significantly in-

crease GPU memory usage, because intermediate data consume

most GPUmemory [42] and multi-resource interleaving interleaves

the occurrence of these data. For the example above, interleaving

four jobs only increases the peak GPU memory consumption by

<10%, compared to GPT2, which consumes the most GPU mem-

ory in the four models. Therefore, multi-resource interleaving is

feasible to increase resource utilization for DL jobs.

Challenges for multi-resource interleaving. There are a few

technical challenges to realize multi-resource interleaving. First, the

overlapping of stages can affect the processing speed of each stage,

and thus each iteration. As a result, different patterns of interleaving,

i.e., when and with which the stages are executed, can provide

Figure 3: Muri architecture.

different speedups. Second, we need a way to capture the utility of

interleaving a group of jobs, reflecting whether a job can interleave

better in terms of resource utilization with one job than another job.

Precisely capturing the interleaving utility of different job groups

is critical to the scheduling quality. Third, for a cluster running

many DL jobs, there are an exponential number of combinations

to group jobs. Based on the interleaving utility of different groups,

we need to decide how to group jobs to maximize cluster-wide

resource utilization and minimize JCT. Fourth, distributed training

jobs run on multiple GPUs and make the situation more complex.

If a distributed training job belongs to different groups on different

GPUs, each worker of this job needs to interleave with different

jobs, and different workers need to synchronize with one another.

This can introduce additional synchronization overhead.

3 MURI OVERVIEW

Muri is a multi-resource cluster scheduler for DL workloads. It

exploits the multi-resource usage pattern of DL jobs for efficient

multi-resource sharing. The core of Muri is to leverage the staged,

iterative computation pattern of DL jobs to interleave DL jobs on

multiple resources in a fine-grained manner in time. This enables

multiple DL jobs to run concurrently on the same set of resources,

which improves resource utilization, reduces job queueing time,

and reduces JCT. The architecture of Muri is shown in Figure 3.

Muri scheduler. Users submit DL training jobs to the Muri sched-

uler. The Muri scheduler maintains a job queue to buffer the sub-

mitted jobs, and makes job scheduling decisions. The scheduler

includes three components, which are resource profiler, job sched-

uler, and worker monitor.

Resource profiler. The resource profiler profiles the resource usage

of each resource type for each job and estimates the interleaving

efficiency of different job groups, which is used as the input of the

scheduling algorithm. When a job is first submitted, the job profiler

performs a few dry runs of the job to measure the resource usage

and execution duration. For the jobs training the same models that

have been submitted previously, the resource profile collected in

the past can be reused without the need for profiling. Given a job

group, the resource profiler uses the resource profiles to estimate

the interleaving efficiency.

Job scheduler. The job scheduler schedules the jobs from the job

queue to the machines in the cluster. The scheduler is periodically

invoked on events like job arrival and job completion. Based on

the interleaving efficiency of different job groups, the scheduler
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Figure 4: Impact of grouping plans on interleaving efficiency.

Grouping plan 1 can perfectly overlap four jobs on two GPUs,

while grouping plan 2 increases the per-iteration time.

employs a multi-round job grouping algorithm to decide which

jobs form groups to share resources in order to maximize resource

utilization. The algorithm can find the optimal grouping strategy for

single-GPU jobs with two resource types. We extend the algorithm

to handle more than two resource types and support multi-GPU

jobs. The algorithm avoids cross-group packing for multi-GPU jobs

to minimize interleaving overhead.

Worker monitor. The worker monitor collects the resource in-

formation of each machine and tracks the progress of each job.

The resource information includes the available capacity of the

resources on each machine. Specific to DL workloads on GPU clus-

ters, the worker monitor collects the number and topology of GPUs

on each machine, so that the scheduler can use the information to

place multi-GPU jobs. The monitor notifies the scheduler when a

scheduled job completes, and the freed resources can be used for

the jobs in the queue.

Muri executor. There is an Muri executor on each machine. The

executor receives jobs and grouping strategies from the job sched-

uler, and executes jobs according to the grouping strategies on the

machines. The executor also reports resource utilization and job

progress to the worker monitor. Once faults occur during training,

the executor will report the fault information to the worker monitor

and assist in handling the faults.

4 MURI DESIGN

In this section, we first discuss how to group single-GPUDL training

jobs with two resource types to gain insights about multi-resource

interleaving. Then we describe how to handle the general case for

multi-GPU jobs and more than two resource types.

4.1 Insights from Single-GPU Jobs with Two
Resource Types

We first consider the basic case of interleaving single-GPU jobs

with two resource types. The scheduling algorithm of Muri is built

on top of the basic case.

Interleaving jobs. We use an example with four jobs (A, B, C,

and D) and two resource types (GPUs and CPUs) in Figure 4 to

show how we interleave DL jobs. The figure indicates the resource

usage of one training iteration for each job. For ease of exposition,

we assume a job uses one resource type each time. The length of

a rectangle indicates how long a job uses a particular resource

type. We shift the stages of different jobs to interleave the jobs,

Figure 5: Grouping plans are computed with maximum

weighted matching. The edge weights in (a) represent the

interleaving efficiency for each pair of jobs. Grouping plan

1 and 2 in Figure 4 correspond to (b) and (c), respectively.

Matching 1 in (b) has higher total weights than matching 2

in (c).

e.g., the CPU stage of job A overlaps the GPU stage of job B in

Figure 4(a) group 1, and the GPU stage of job A overlaps the CPU

stage of job B in turn. We add a synchronization barrier after the

overlapped stages of different jobs. Take group 1 in Figure 4(b) as

an example. The CPU stage of C waits until the end of the CPU

stage of A, rather than executing directly after the GPU stage of

itself. The reason for avoiding two jobs from using one resource

simultaneously is that the processing speed may be significantly

affected due to interference [3].

Capturing resource interleaving efficiency.We need a metric

to capture the resource interleaving efficiency when grouping two

jobs. According to the example in Figure 4, a grouping plan that

can perfectly overlap the resource usage of the jobs is better than

one that cannot. Intuitively, better resource interleaving efficiency

means less idle time of the resources. Therefore, we define the

resource interleaving efficiency 𝛾 as the fraction of time that some

resources are not idle.

Formally, we define 𝑡
𝑗
𝑖 as the duration that job 𝑖 uses resource 𝑗 .

When we interleave two jobs, the duration of one iteration 𝑇 is

𝑇 = max(𝑡00 , 𝑡
1
1 ) +max(𝑡10 , 𝑡

0
1 ) . (1)

For resource 𝑗 , its idle time after interleaving the two jobs is𝑇 −𝑡
𝑗
0 −

𝑡 𝑗1 , and the fraction of idle time is (𝑇 − 𝑡
𝑗
0 − 𝑡

𝑗
1 )/𝑇 . With two types of

resources, the average fraction of idle time is 1
2

∑1
𝑗=0 (𝑇 − 𝑡

𝑗
0 − 𝑡

𝑗
1 )/𝑇 .

Note that we take the average fraction of idle time to consider all

resource types. Thus, the resource interleaving efficiency 𝛾 (i.e., the
fraction of time that the resources are not idle) is

𝛾 = 1 −
1

2

1∑

𝑗=0

𝑇 − 𝑡
𝑗
0 − 𝑡

𝑗
1

𝑇
. (2)

We use the example in Figure 4 to illustrate how to compute

interleaving efficiency. For grouping A and B, all resources are

utilized all the time. The fraction of idle time of both CPU and GPU

is 0. Therefore, the interleaving efficiency of grouping A and B

is 1. For grouping A and C, CPU is continuously utilized, and the

fraction of idle time of CPU is 0. GPU is only utilized half of the time,

and the fraction of idle time of GPU is 0.5. Thus, the interleaving

efficiency of grouping A and C is 1 - (0 + 0.5)/2 = 0.75.

Computing optimal grouping plans. Given 𝑛 jobs, we group

jobs so that the interleaving efficiency of the entire grouping plan

is maximized for higher resource utilization along with shorter JCT.
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Weuse the example in Figure 4 to illustrate the grouping problem.

We compare two grouping plans. Plan 1 groups A with B, and C

with D. A uses CPU intensively, and B uses GPU intensively. As

shown in Figure 4(a), the resource usage of A and B on different

resources can overlap perfectly, and grouping A and B can fully use

both resources. Similarly, C and D can also fully use the resources

by interleaving with each other. In contrast, plan 2 groups A with

C, and B with D. Both A and C use CPU intensively and use GPU

lightly. As shown in Figure 4(b), interleaving A and C cannot fully

use both resources. There is a significant amount of time that GPU

is idle when one job is using CPU. Similarly, grouping B and D also

reaches a low resource utilization.

We can convert this problem to a maximum weighted matching

problem. Specifically, we build a graph 𝐺 (𝑉 , 𝐸) where each node

𝑣 ∈ 𝑉 represents a job, and each edge (𝑢, 𝑣) ∈ 𝐸 indicates grouping

job 𝑢 and job 𝑣 . We use Equation 2 to compute the interleaving

efficiency 𝛾𝑢,𝑣 for grouping 𝑢 and 𝑣 , and assign 𝛾𝑢,𝑣 as the weight
of edge (𝑢, 𝑣). A matching𝑀 of graph𝐺 is a set of edges where no

two edges share a vertex.

A grouping plan corresponds to a matching of the graph. Thus,

finding the optimal plan can be converted to finding the maximum

weighted matching of the graph. Maximum weighted matching is

a well-studied problem in graph theory. Blossom algorithm is a

polynomial algorithm that can find a maximum weighted matching

in𝑂 ( |𝑉 |3) time. For the example in Figure 4, we build a graph with

four nodes as in Figure 5(a). We connect the nodes and compute

the interleaving efficiency to be the weight of each edge. Then we

apply Blossom algorithm to find the maximum weighted matching

of the graph, which is the one in Figure 5(b). Plan 1 in Figure 5(b)

corresponds to the matching in Figure 4(a), and plan 2 in Figure 5(c)

corresponds to the matching in Figure 4(b). Plan 1 has a higher sum

of weights than Plan 2, indicating higher resource efficiency.

Fusing multiple jobs. It may be possible to concatenate the same

stage of multiple jobs and fuse these jobs as one. For example,

we can fuse job A and job C in Figure 4 to get a job E that uses

4 unit time of CPU first and then 2 unit time of GPU. Assume a

job F that uses 4 unit time of GPU and 2 unit time of CPU. The

interleaving efficiency of job E and job F is 1, which is unreachable

without concatenating job A and job C. However, fusing multiple

jobs increases the search space of grouping plans exponentially and

makes the control and synchronization of the interleaving process

complex. Therefore, we avoid fusing multiple jobs and group only

two jobs for two resource types.

4.2 Multi-GPU Multi-Resource Job Scheduling

Handling multiple resource types. DL training jobs use multiple

resource types, such as CPUs, GPUs, storage IO, and network IO.

Conceptually, generalizing the scheduling algorithm from two to

multiple resource types needs to solve two problems.

The first problem is to estimate the interleaving efficiency. Given

multiple resources, there are several orderings to interleave two

jobs, and different orderings have different interleaving efficiency.

Figure 6 illustrates this problem with an example of interleaving

two jobs with four resource types. For each iteration, job A spends

two time units on CPU and one time unit on each other resource

type; job B spends two time units on GPU and one time unit on each

Figure 6: The ordering of jobs affects the interleaving effi-

ciency under multiple resource types.

other resource type. Figure 6(a) shows the best ordering that per-

fectly overlaps two jobs. In comparison, Figure 6(b) shows a worse

ordering that the two jobs cannot perfectly overlap. Interleaving

unnecessarily increases the per-iteration time by introducing idle

time in the execution. The per-iteration time in Figure 6(b) is longer

than that in Figure 6(a). To address this problem, we enumerate all

the orderings to find the best one and then compute the interleaving

efficiency. Note that because the number of resource types is small

(e.g., typically four resource types for DL jobs), the enumeration can

be completed quickly. Once the ordering is decided, the duration of

one iteration 𝑇 can be calculated by

𝑇 =
𝑘−1∑

𝑗=0

𝑝−1
max
𝑖=0

(𝑡
(𝑖+𝑗)𝑚𝑜𝑑 𝑘
𝑖 ) (3)

where 𝑘 is the number of resource types, 𝑝 is the number of jobs in

one group. Furthermore, we can extend Equation 2 to

𝛾 = 1 −
1

𝑘

𝑘−1∑

𝑗=0

𝑇 −
∑𝑝−1
𝑖=0 𝑡

𝑗
𝑖

𝑇
. (4)

The second problem is to group jobs given multiple resources.

Similar to two resource types, we avoid fusing multiple jobs and

pack at most 𝑘 jobs with 𝑘 resource types to limit the search space

and simplify the control and synchronization of the interleaving

process. Nonetheless, the problem becomes complicated when 𝑘 is
bigger than two, because we need to consider matching 𝑘 jobs on a

k-dimensional hypergraph instead of two jobs on a normal graph.

Formally, for𝑘 resource types, we build a k-dimensional hypergraph

𝐺 (𝑉 , 𝐸). Each node 𝑣 ∈ 𝑉 represents a job; each hyperedge 𝑒 ∈ 𝐸
represents grouping 𝑘 nodes, and the weight of 𝑒 is the interleaving
efficiency of grouping the corresponding 𝑘 jobs. As 𝑛 nodes can

form 𝐶𝑘𝑛 different 𝑘-node groups, there are 𝐶𝑘𝑛 edges in 𝐸. Finding
the optimal grouping plan is transformed to finding the maximum

weighted matching on the hypergraph. This problem is known

as maximum weighted 𝑘-uniform hypergraph matching in graph

theory, which is equivalent to maximumweight independent set [7]

and thus is NP-hard [4] .

We design a multi-round heuristic algorithm to handle the gen-

eral case ofmultiple resource types based on the insights of handling

two resource types. The main idea is to divide the matching process

into multiple rounds, and each round uses Blossom algorithm to
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Algorithm 1 Multi-round job grouping

1: // 𝑘 is the number of resource types

2: Initialize an empty graph 𝐺
3: // Add the first 𝑛 jobs to the graph

4: // These 𝑛 jobs can be fully grouped and they can fully

utilize the cluster

5: 𝑗𝑜𝑏𝑠 ← 𝐽𝑜𝑏𝑄𝑢𝑒𝑢𝑒.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑛)
6: for 𝑗𝑜𝑏 ∈ 𝑗𝑜𝑏𝑠 do
7: 𝐺.𝑎𝑑𝑑𝑁𝑜𝑑𝑒 ( 𝑗𝑜𝑏)

8: // log2 𝑘 rounds to group

9: for 𝑖 from 0 to 𝑙𝑜𝑔2𝑘 − 1 do

10: for each pair (𝑢, 𝑣) ∈ 𝐺.𝑛𝑜𝑑𝑒𝑠 () do
11: 𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑢, 𝑣)
12: 𝐺.𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑢, 𝑣,𝑤𝑒𝑖𝑔ℎ𝑡)

13: // Find best matching with Blossom algorithm

14: 𝑀 ← 𝐺.𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔()
15: // Each pair in𝑀 forms an interleaving group

16: for each pair (𝑢, 𝑣) ∈ 𝑀 do

17: 𝑤 ← 𝑀𝑒𝑟𝑔𝑒𝑁𝑜𝑑𝑒 (𝑢, 𝑣)
18: 𝐺.𝑟𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒 (𝑢)
19: 𝐺.𝑟𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒 (𝑣)
20: 𝐺.𝑎𝑑𝑑𝑁𝑜𝑑𝑒 (𝑤)

group jobs. At the end of each round, each pair of nodes in the

matching found by the Blossom algorithm is merged into one node,

and is fed into the next round for matching other nodes. Algo-

rithm 1 shows the pseudocode of the algorithm. At the beginning,

it picks the first 𝑛 jobs from the queue so that these jobs can form

k-job groups that fully utilize the cluster, and puts the jobs to the

graph (line 1-7). We add all the potential jobs at the beginning for

better matching. Then in each iteration, it adds an edge between

each pair of nodes (line 10-12). The edge weight is the interleaving

efficiency (line 11). It uses Blossom algorithm to find the maximum

weighted matching of the graph (line 13-14). For each pair in the

matching, the jobs are grouped, and their nodes are merged into one

node for matching in the next iteration (line 15-20). The iteration

is performed for log2 𝑘 times as the number of jobs in one group is

doubled in each iteration. The time-complexity of our multi-round

grouping algorithm is 𝑂 (𝑛3 log2 𝑘).

Handling multi-GPU jobs. Distributed training is prevalently

used for training large models. In data parallel training, each worker

trains a copy of the model locally and performs model synchroniza-

tion at the end of each iteration. This means each worker can use

its own CPU, GPU, and storage resources independently, but has

to coordinate with one another when it uses network resources

to synchronize the model. Because of the need for intra-job syn-

chronization, the speed of a job depends on its slowest worker. For

example, as shown in Figure 7, the worker of job A on GPU 2 has

to synchronize with that on GPU 1, which leads to one unit idle

time on GPU 2. On the other hand, multi-resource interleaving

introduces new dependencies between jobs. When a group of jobs

interleaves with each other to share the same set of resources, the

speed of a job depends on the speed and resource usage pattern of

other jobs in the group. For a distributed training job, each worker

may interleave with a different set of jobs on different GPUs. In this

Figure 7: Interaction between inter-job interleaving and intra-

job synchronization. The per-iteration time of C is increased.

scenario, inter-job interleaving interacts with intra-job synchro-

nization, which brings additional overhead. The concrete example

in Figure 7 shows that on GPU 1, job A has to wait one time unit to

use the network after using the GPU to interleave with job B, and

on GPU 2, job C has to wait for job A as well.

Both inter-job interleaving and intra-job synchronization intro-

duce dependencies and the speed of a job is decided by the slowest

worker. Importantly, this problem has a cascading effect. Specifi-

cally, the slowdown of a job due to inter-job interleaving affects all

its workers because of intra-job synchronization. Then the slow-

down is further propagated to jobs that share any worker of the

first job due to inter-job interleaving. To avoid the cascading effect,

Muri divides multi-GPU jobs into different buckets. The jobs in

the same bucket use the same number of GPUs. Muri applies the

multi-round grouping algorithm to group jobs in the same bucket,

i.e., only group jobs with the same GPU requirement.

Optimizing for average JCT. Jobs are submitted to the sched-

uler and are buffered in the job queue to be scheduled. The multi-

resource grouping algorithm computes job grouping plans. The

queue can contain more jobs than that can be scheduled on the

cluster, even if the resources are shared. Thus the scheduler needs to

decide which subset of jobs should run. As multi-resource grouping

improves makespan inherently, we optimize for the other common

metric, average JCT, additionally. Simple policies like FIFO have

head-of-line (HOL) blocking where small jobs are blocked by large

jobs in front of the queue, causing long average JCT. For DL training

workloads, SRSF and 2D-LAS are effective for minimizing average

JCT when job durations are known and unknown, respectively [15].

Muri integrates SRSF and 2D-LAS with multi-resource interleaving

to increase resource utilization and minimize average JCT.

Specifically, Muri assigns a priority to each job and sorts jobs in

the queue based on their priorities. When scheduling jobs, Muri

dequeues jobs from the head, and applies the multi-resource group-

ing algorithm to group the dequeued jobs. For each group of jobs,

Muri interleaves them to share the resources. The priority for each

job is computed by SRSF or 2D-LAS depending on whether the job

duration is known. Formally, let 𝑝𝑖 be the priority of job 𝑖 . A lower

value of 𝑝 𝑗 means a higher priority. When job duration is known,

let 𝑟𝑖 be the remaining time of job 𝑖 and 𝑔𝑖 be the number of GPUs

used by 𝑖 . SRSF computes the priority of job 𝑖 as 𝑝𝑖 = 𝑟𝑖 × 𝑔𝑖 . When

job duration is unknown, let 𝑎𝑖 be the time that job 𝑖 has already
run. 2D-LAS computes the priority of job 𝑖 as 𝑝𝑖 = 𝑎𝑖 × 𝑔𝑖 . Note
that SRTF and LAS consider the canonical setup where a job is only
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executed by a single GPU and only use 𝑟𝑖 and 𝑎𝑖 as priorities. SRSF
and 2D-LAS extend them by also considering the number of GPUs

used by each job, and are more suitable for DL training workloads.

Handling multi-resource usage in practice. In practice, the

usage of different resource types overlaps. When estimating the

interleaving efficiency, we normalize the usage of each resource

type of each job to its peak. For each time point, we consider the

resource type with the highest resource usage as the resource type

used by the job. We also filter the resource usage of a job to be zero

if it is below a threshold. With this, we estimate the duration of

each resource types.

5 IMPLEMENTATION

We have built a prototype of Muri with ∼7,000 lines of code in

total and integrated it with PyTorch [2]. The prototype follows

the architecture in Figure 3, with two major components that are

Muri scheduler and Muri executor. Muri scheduler is composed

of three modules, including resource profiler, job scheduler and

worker monitor.

Muri scheduler. The scheduler runs the scheduling algorithm at a

fixed time interval to reduce the overhead of preemption and restart.

The time interval is a configurable parameter, and we use the same

value, six minutes, as previous work [45]. It generates the grouping

and placement plans, and schedules jobs according to the plans.

The grouping plan is generated based on the resource profile of

each job and the scheduling algorithm. If a model is first submitted,

the scheduler uses an executor to execute tens of iterations to get

the average time of each resource type in one iteration. Otherwise,

the job scheduler uses the recorded resource profile. We follow

the common practice to set the number of GPUs a DL job needs

to be a power of two. The placement plan allocates GPUs in a

descending order based on the number of GPUs a job needs, which

avoids fragmentation and minimizes the number of nodes used

by a job. When the grouping and placement plans are generated,

the scheduler terminates old jobs and starts new jobs according to

the plan. The worker monitor monitors the resource information

of each machine, e.g., GPU utilization, CPU utilization, and disk

IO speed. Network IO speed is not monitored due to hardware

limitations. Additionally, the worker monitor tracks each job to

handle events, such as startup, termination, and job completion.

When the worker monitor receives queries from the scheduler, it

reports the information collected from the executors.

Muri executor. Each executor executes DL jobs according to the

scheduler’s grouping plan.We use PyTorch [2] as the DL framework

to run DL training jobs on each machine and use Horovod [40] for

distributed training. To interleave different stages, we merge the DL

jobs to one process and one CUDA context due to two reasons. First,

we can control the stages in one process with asynchronous opera-

tions and synchronization operations of PyTorch and CUDA, which

have low coordination overhead. Second, one CUDA context avoids

the overhead of context switching. We integrate the overlapping

process as a Python library. Users are only required to annotate data

loading, computation, and gradient synchronization in the model

training code. This part can also be directly integrated into PyTorch

to avoid changes to the training code, which we leave for future

Model Type
Dataset/

Env

Batch

Size

Bottle-

neck

ResNet18 [16] CV ImageNet [9] 128 Storage

ShuffleNet [24] CV ImageNet [9] 128 Storage

VGG16 [41] CV ImageNet [9] 16 Network

VGG19 [41] CV ImageNet [9] 16 Network

Bert [10] NLP WikiText [27] 4 GPU

GPT-2 [39] NLP WikiText [27] 4 GPU

A2C [28] RL Breakout [5] 64 CPU

DQN [29] RL Breakout [5] 128 CPU

Table 3: DL models used in evaluation.

work. The executor records the number of executed iterations

and the average time of iterations, and provides the information

to the worker monitor. When the executor is instructed by the

resource profiler to profile a job, it starts the job and measures the

time of each stage of the iterations, e.g., load data, pre-process data,

forward and backward propagation, and communication, through

PyTorch Profiler. We regard the measured time as the approximated

resource time, because each stage mainly uses one resource type,

e.g., forward and backward propagation mainly uses GPU. After a

few dry runs, the time is reported to the resource profiler. The pro-

filing overhead is negligible compared to the long training process.

Specifically, the profiler executes a model for only tens of iterations

to obtain stable profiling results, while the training process takes

∼136,482 iterations on average in the real-world traces used in the

evaluation. Additionally, the executor assists in handling faults

during training. When a fault occurs, the executor will report the

error information to the worker monitor and terminate the training

process. The related DL job will be pushed back to the job queue.

Scalability. The centralized scheduler can generate a grouping

plan for 1,000 jobs in a few seconds, which is negligible compared

to the scheduling interval and is not the system bottleneck. The

executors run training jobs instructed by the scheduler. Muri does

not introduce new scalability challenges and its architecture is in

line with existing DL cluster schedulers [15, 25, 34].

6 EVALUATION

We first compare Muri with state-of-the-art DL schedulers on a

testbed with 64 GPUs. The results show that Muri improves average

JCT by 2.03–3.56×, makespan by 1.47–1.59×, and tail JCT by 2.54–

3.82× . We then evaluate Muri on larger Microsoft Philly traces

with simulations, which show that Muri improves average JCT by

1.13–6.15×, makespan by 1.00–1.65×, and tail JCT by 1.21–5.37×.

We also evaluate the design choices of Muri.

6.1 Experiment Setup

Testbed.We use a cluster consisting of 8 machines and 64 GPUs

for experiments. Each machine is equipped with 8 NVIDIA Tesla

V100 GPUs, 2 Intel Xeon Platinum 8260 CPUs, 256GB memory, and

a Mellanox CX-5 single-port NIC. The machines communicate via

NCCL2 and RDMA (RoCEv2). The DL training jobs run PyTorch

v1.8.1 with CUDA 11.1.

Workloads.Weuse the public real-world traces fromMicrosoft [19]

and split the trace according to virtual cluster ID. We evaluate with
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SRTF SRSF Muri-S

Normalized JCT 2.12 2.03 1

Normalized Makespan 1.56 1.59 1

Normalized 99𝑡ℎ%-ile JCT 3.31 3.82 1

Table 4: Evaluation metrics of schedulers when job durations

are known in testbed experiments.

Tiresias Themis Muri-L

Normalized JCT 2.59 3.56 1

Normalized Makespan 1.48 1.47 1

Normalized 99𝑡ℎ%-ile JCT 2.54 2.60 1

Table 5: Evaluation metrics of schedulers when job durations

are unknown in testbed experiments.

four traces whose job numbers vary from 992 to 5755 for simula-

tion. For testbed experiments, we select the busiest interval that

contains 400 jobs. We use submission time, duration, and the num-

ber of GPUs of each DL job from the traces. Duration is unknown

for duration-unaware schedulers, i.e., Tiresias [15], AntMan [45],

Themis [25], Muri-L. Because the DL model for each job is not

included in the traces, we follow the common practice [25, 34, 45]

to randomly choose DL models from eight popular DL models listed

in Table 3. We list per-GPU batch sizes in Table 3. The number of

training iterations is calculated according to the duration of the

jobs and the average time of one iteration. The DL models are im-

plemented in PyTorch with common configurations, which have

already applied intra-job pipelining to overlap the usage of different

resource types inside each job. We show the sensitivity of Muri to

the workload distribution in §6.4.

Simulator.We implement a simulator to evaluate the schedulers

for large traces and different configurations. The simulator is im-

plemented based on the open-source code of Tiresias [15] and

Gavel [34] We profile DL jobs on the real testbed for the duration

of each resource type and one iteration. The difference between

the metrics of simulations and the metrics of testbed experiments

is under 3%, indicating that the simulator has high fidelity.

Baselines. Our evaluation covers both scenarios when the job

durations are known and unknown. Muri-S and Muri-L represent

Muri using SRSF and 2D-LAS as the priority, respectively. When

the job durations are known, we compare Muri-S with SRTF and

SRSF [15]. When the job durations are unknown, we compare Muri-

L with Tiresias [15], AntMan [45], and Themis [25]. For testbed

experiments, we set the scheduling interval to be six minutes to

minimize the overhead of preemption and restart. For Tiresias [15],

we use the default hyper-parameters in the open-source code. Be-

cause AntMan [45] does not open-source its scheduler part, we

only compare it in simulations.

Existing multi-resource schedulers [12–14] are mostly designed

for big data workloads and use the peak demand of each resource

type for space sharing. For most DL training jobs, the peak GPU

demand is close to 1, implying that there is almost no sharing

opportunity for space sharing. Therefore, existing multi-resource

schedulers degenerate to SRTF or its variants when scheduling DL

training jobs to optimize average JCT.
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(b) Job durations are unknown.

Figure 8: Detailed metrics in testbed experiments.

In the analysis of Muri (§6.4), we vary the configuration of Muri

to show the efficiency of each component. We use k-job group to

represent a group with k jobs for simplicity.

Metrics.Wemeasure average JCT,makespan, tail JCT, queue length,

blocking index, and resource utilization during real cluster exper-

iments. Average JCT and makespan are two common metrics to

reflect the job and resource efficiency of schedulers [36]. Tail JCT

in clusters evaluates fairness [18]. Queue length is the number of

pending jobs in the cluster, indicating the busyness of the clus-

ter [18]. Blocking index is the average ratio of pending time to

remaining time of pending jobs, showing the ability to avoid job

starvation implicitly [18]. The resource utilization represents how

the resources are utilized.

6.2 Muri in Testbed Experiments

Table 4 and Table 5 show the average JCT, makespan, and tail JCT

(99th percentile) of each scheduler on a 64-GPU cluster. We use fast-

forwarding in the experiments as prior work [44] since one trace

would take tens of days. Specifically, we execute multiple iterations

to measure the average iteration time and skip iterations when no

scheduling event happens. We confirm that fast-forwarding results

are approximate to those of full-scale execution with a 2-hour trace.

The error rate is lower than 2%.

Overall performance on real cluster. Table 4 shows that Muri-S

improves average JCT by more than 2×, makespan by more than

1.5× and, tail JCT by more than 3.3× compared with SRTF and
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Figure 9: Simulation results when job durations are known.
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Figure 10: Simulation results when job durations are unknown.

SRSF when the job durations are known. Table 5 shows that Muri-S

improves average JCT by more than 2.5×, makespan by more than

1.4× , and tail JCT by more than 2.5× compared with Tiresias and

Themis when the job durations are unknown. These results show

that the job performance and cluster efficiency can be improved

together by Muri. Theoretically, Muri’s makespan can be up to 4×

shorter than baselines. However, there are two main reasons for

the lower speedups in our evaluation. First, even for one group

with four jobs, it is difficult to achieve 4× speedup. Although one

stage mainly occupies one resource type, other resource types may

still be used in this stage. Consequently, the resource contention

between different stages decreases the processing speed, leading to

a smaller speedup. Second, the speedup is further decreased when

taking the entire trace into consideration, because the cluster is not

always busy enough for the scheduler to group four proper jobs for

each GPU. Muri’s average JCT and tail JCT are better because jobs

can be executed earlier in Muri than baselines.

Detailed metrics to show the benefits of Muri. Figure 8 shows

queue length, blocking index, and utilization statistics for IO, CPU,

andGPU resources. Queue length reflects the busyness of the cluster.

Muri can significantly alleviate the busyness as it runs more DL

jobs concurrently. Blocking index reflects job efficiency and the

ability to avoid starvation. Severe starvation can happen when

using schedulers that aim to reduce average JCT [18]. The low

value of blocking index of Muri indicates its natural ability to avoid

starvation. The reason is that Muri executes more jobs concurrently,

so as to help alleviate starvation. The curve of resource utilization

shows that Muri is capable of utilizing resources more efficiently.

These results validate the explanation in §4 that one key source of

the improvement of Muri is its ability to utilize idle resources by

interleaving training stages of different jobs.

6.3 Muri in Trace-Driven Simulations

We conduct trace-driven simulations to evaluateMuri with a variety

of workloads and configurations. Figure 9 and Figure 10 compare

the average JCT, makespan, and tail JCT (99th percentile) of Muri

with SRTF, SRSF, Tiresias, Themis, and AntMan. There are two

types of traces used in the simulations. Trace 1–4 are the original

Microsoft Philly traces, while trace 1′–4′ are variants of trace 1–4

by making all the jobs available at the beginning of the simulation

(i.e., set the submission time of all jobs to be 0).

Muri improves performance on all traces. When the job du-

rations are known, the speedup of average JCT is 1.13–2.26×, the

speedup of makespan is 1–1.65×, and the speedup of tail JCT is

1.36–4.57×. When the job durations are unknown, the speedup of

average JCT is 1.53–6.15×, the speedup of makespan is 1–1.55×,

and the speedup of tail JCT is 1.21–5.37×. We find that the speedup

of average JCT when the job durations are unknown is higher than

that when the job durations are known. The reason is that when the

job durations are unknown, it is more challenging to decide which

jobs should be scheduled first to reduce average JCT. As a result,

Tiresias and Themis perform worse than SRTF. Since Muri can run

more jobs concurrently, it is less impacted by picking the right

set of jobs to run, and Muri-L downgrades slightly compared with

Muri-S. AntMan [45] is a state-of-the-art GPU-sharing scheduler.

The makespan and tail JCT of AntMan are better than Tiresias and

Themis in some cases, because of the benefit of sharing GPUs to

run multiple jobs together. AntMan does not work well for average

JCT, because AntMan schedules DL jobs in the FIFO order and is

non-preemptive. For trace 3, Muri has no speedup in makespan

because the trace is lightly loaded, and a few jobs submitted near

the end of the trace dominate the final completion time of the en-

tire trace. Besides, some long DL training jobs are submitted at the

beginning of trace 3 and are executed late in baselines, which leads

to a wide difference in tail JCT.

Impact of load.We evaluate the schedulers with higher load by

setting the submission time of all jobs to 0, i.e., the results of trace 1′–

4′. In all cases, the speedup of the makespan when the submission

time is 0 is higher than that of the original traces, reflecting the

impact of load. The reason is that when all jobs are submitted at
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Figure 11: Impact of the scheduling algorithm design.
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Figure 12: Impact of the number of jobs in one group. Muri-

L-𝑖 represents there are at most 𝑖 jobs in one group.

time 0, the degree of resource contention is higher, which provides

more opportunity for multi-resource interleaving, and thus Muri

can provide higher improvement.

6.4 Analysis of Muri

Impact of the scheduling algorithm design. The scheduling al-

gorithm of Muri finds the best ordering to interleave a group of jobs

and uses Blossom algorithm to decide how to group jobs. To show

the benefits of the two design choices, we compare Muri-L with two

variants, Muri-L with worst ordering and Muri-L without Blossom.

Muri-L with worst ordering interleaves the jobs in the worst exe-

cution order to better show the effects of execution order. Muri-L

without Blossom packs DL jobs with the same requirement of GPUs

in descending order of the priority, rather than uses the Blossom-

based multi-round grouping algorithm. Figure 11 compares the

average JCT, and makespan of Muri-L and the two variants. First,

both metrics of Muri-L with worst ordering are worse than those

of Muri-L, confirming the importance of the ordering of jobs in

one group. Second, the average JCT of Muri-L without Blossom is

up to 14% longer, and the makespan is up to 6% longer compared

with Muri-L, demonstrating the effectiveness of the Blossom-based

multi-round grouping algorithm.

Impact of the number of jobs in one group. We vary the

maximum number of jobs in one group from 2 to 4 and compare

the performance with the state-of-the-art GPU-sharing scheduler,

AntMan [45]. To better illustrate the impact of the number of jobs

in one group, we set the submission time of all DL jobs to 0. The re-

sults in Figure 12 show that Muri outperforms AntMan, regardless

of the number of jobs in one group. As expected, average JCT and

makespan have negative correlations with the number of jobs in

the group, indicating the effectiveness of multi-resource multi-job

sharing. Besides, the improvement of 2-job grouping is close to

or even higher than 3-job grouping, showing that grouping more

jobs to share the same set of resources may bring more overhead.

According to our profiling results in testbed experiments, the over-

head of 3-job grouping can overweigh the benefits of grouping
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Figure 13: Impact of workload distributions. We vary the

number of job types that are bottlenecked by different re-

source types.
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Figure 14: Impact of inaccurate profiling. We vary the profil-

ing noise from 0 to 1.

more jobs compared to 2-job grouping, and 4-job grouping brings

enough interleaving benefits to improve both metrics.

Impact of workload distributions. The workload in Table 3 con-

tains four types of jobs bottlenecked on different resource types, i.e.,

storage, network, GPU and CPU, respectively. In this experiment,

we vary the number of job types from one (i.e., only contains jobs

bottlenecked on one type of resources) to four (i.e., the workloads

in Table 3). Figure 13 shows the speedups of Muri-S (Muri-L) com-

pared with SRTF (Tiresias) under known (unknown) job durations.

Muri performs similar to SRTF and Tiresias when there is only one

job type. It is slightly better due to limited sharing opportunities.

The speedup increases with the number of job types. With just two

job types, Muri is already 1.42× of SRTF and 1.49× of Tiresias. And

with four job types, Muri is 2.26× of SRTF and 3.92× of Tiresias.

Impact of inaccurate profiling. In practice, the duration of each

stage profiled by Muri’s profiler may be inaccurate in comparison

with the actual execution duration. The inaccuracy mainly comes

from two aspects. First, the actual execution duration varies each

time due to hardware and software conditions. Second, the pro-

filer has some noise and returns inaccurate profiling results. To

evaluate the impact of inaccurate profiling, we artificially vary the

profiling noise 𝑛𝑝 from 0 to 1. Specifically, Muri gets the duration

of each stage which is the actual execution duration multiplied by

a random factor in [1 − 𝑛𝑝 , 1 + 𝑛𝑝 ]. Figure 14 shows the average
JCT and makespan normalized to those with no profiling noise, i.e.,

𝑛𝑝 = 0. The normalized average JCT increases from 1× to 1.3×,
showing that inaccurate profiling influences the performance of

Muri. However, the profiling noise is usually under 0.2 in practice,

which increases the average JCT by only less than 1% as shown

in Figure 14. In terms of the normalized makespan, it remains 1×

under various profiling noise mainly because of the lightly loaded

trace and several long DL jobs. In consequence, inaccurate profiling

has little impact on the performance of Muri in practice.
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7 DISCUSSION

Fairness and variability.Multi-resource interleaving has different

effects on different jobs, which brings the concern of fairness. For

example, as shown in Table 2, VGG16 is slowed down the most

and ShuffleNet is almost not affected. Besides, multi-resource inter-

leaving increases the variability of performance, as a DL job might

have different throughputs based on which job it is grouped with.

However, users are still incentivized to interleave their jobs with

others. As shown in §6, multi-resource interleaving benefits overall

jobs in a cluster, because the jobs tend to be scheduled to run earlier

and thus to finish earlier with interleaving.

Model parallel training. Model parallel training is another pop-

ular distributed training paradigm. Our current implementation

supports data parallel training, but model parallel training can be

supported similarly as data parallel training. Specifically, for the

forward propagation, each worker has three stages, i.e., receiving

intermediate data from the previous worker, computing, and send-

ing intermediate data to the next worker. The first worker replaces

the first stage with loading data and preprocessing, while the last

worker replaces the last stage with synchronizing gradients. Dif-

ferent stages mainly use different resource types considering the

full-duplex network. For the backward propagation, each worker

has three stages that mainly use different resource types as well.

Therefore, Muri can support model parallel training by (𝑖) inter-
leaving stages in one model parallel training job with stages of the

same propagation direction in other jobs, and (𝑖𝑖) adjusting the

interleaving efficiency for the Blossom-based scheduling algorithm.

8 RELATEDWORK

DL scheduling. Existing DL schedulers focus on GPU allocation

and allocate GPUs exclusively to DL jobs. Optimus [36] predicts

model convergence and estimates training speed for scheduling.

Tiresias [15] proposes two-dimensional metrics to minimize aver-

age JCT and considers job placement to improve resource utilization.

Themis [25] applies auction algorithms to balance finish-time fair-

ness and efficiency. CoDDL [18] focuses on elastic training that

dynamically allocates resources to jobs. Pollux [38] is an adap-

tive scheduler that co-optimizes system throughput and statistical

efficiency. Synergy [30] allocates resources disproportionately ac-

cording to the DL model’s sensitivity to resources. DPF [22] is

a variant of Dominant Resource Fairness algorithm considering

the non-replenishable privacy resource. These DL schedulers do

not consider multiple resource types, while Muri exploits multi-

resource interleaving to improve resource utilization and reduce

JCT. Some works [18, 30, 38] propose elastic training for DL jobs,

which is orthogonal to Muri. Combining Muri with elastic training

is an interesting direction for future work.

Multi-resource scheduling.Multi-resource scheduling has been

studied by cluster schedulers for big data workloads. Dominant Re-

source Fairness (DRF) [11] generalizes max-min fairness to handle

multiple resource types. Tetris [12] leverages multi-resource pack-

ing and uses a heuristic to compute packing plans. Graphene [14]

considers the Directed Acyclic Graph (DAG) structure of big data

jobs and proposes a heuristic that schedules long-running and

tough-to-pack jobs first. Carbyne [13] proposes an altruistic, long-

term approach that leverages leftover resources to improve multi-

resource scheduling. These schedulers allocate resources in space,

while Muri exploits the staged, iterative computation pattern of

DL jobs to enable fine-grained multi-resource sharing in time.

MonoSpark [35] decomposes data analytics jobs into monotasks

and each monotask uses exactly one resource type, e.g., CPU, disk,

or network. The monotasks in MonoSpark are similar to the stages

in Muri, but they are proposed for different goals. MonoSpark fo-

cuses on performance clarity, while Muri utilizes stages to enable

multi-resource sharing and improve performance.

Resource sharing for DL workloads. Recent work has explored

GPU sharing for DL workloads. NVIDIA provides Multi-Process

Service (MPS) [1] to multiplex jobs on GPUs. Gandiva [44] proposes

jobmigration, job packing and Grow-Shrink to improve GPU utiliza-

tion. 𝐺𝑎𝑛𝑑𝑖𝑣𝑎𝑓 𝑎𝑖𝑟 [6] goes further in user-level fairness and GPU

heterogeneity. Salus [46] provides fast job switching and memory

sharing primitives for GPUs. Gavel [34] focuses on heterogeneous

accelerators and uses MPS for GPU sharing. PAI [43] describes

an MLaaS cluster scheduler with heterogeneous GPUs and shares

GPUs by allocating proportional GPU memory. AntMan [45] lever-

ages dynamic scaling techniques to enable GPU sharing in a more

fine-grained manner than Gandiva. Retiarii [47] fuses DAGs of

similar jobs in the context of exploratory training. Wavelet [42]

shares one DL job with itself by overlapping the forward and back-

ward propagations. Zico [21] adopts the similar high-level idea of

Wavelet and performs an extensive study about the GPU memory

usage pattern. Compared with existing sharing methods, the multi-

resource interleaving we proposed considers multiple resource

types to maximize resource utilization and utilizes interleaving to

minimize interference of the resources among grouped jobs.

9 CONCLUSION

We have presented Muri, a DL cluster scheduler that utilizes multi-

resource interleaving to improve cluster and job efficiency. Muri

leverages the staged, iterative computation pattern of DL jobs. We

presented a formulation of interleaving efficiency that reflects the

interleaving effect and transformed the scheduling problem to a

matching problem. To maximize interleaving efficiency, we de-

signed a novel scheduling algorithm based on Blossom algorithm

for multi-resource multi-job packing. Muri outperforms existing

DL cluster schedulers whether the job durations are known or not.
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