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ABSTRACT

Network transmissions are the cornerstone of most mobile
apps today, and a main contributor to energy consumption.
We use a componentized energy model to quantify energy
use by device, and observe significant energy consumption
by the CPU in network operations. We assert that optimiz-
ing network operations in the CPU can produce significant
energy savings, and explore the impact of two potential ap-
proaches: one-copy data moves and offloading the network
stack to the basestation.

1. INTRODUCTION

Mobile networking consumes a significant portion of smart-
phone energy [9, 8]. Much of the today’s research on en-
ergy efficient mobile networks focuses on system-level ap-
proaches, e.g., saving power by shutting down entire com-
ponents or putting the device to sleep. This is partly due to
the fact that, until recently ([9, 8, 27]), researchers had lim-
ited visibility into the energy consumed by individual system
components. In contrast, quantifying energy consumed by
each component can enable the development of component-
specific energy-saving techniques.
In this paper, we take a different approach to energy-efficient

mobile networking, by first studying the energy consumed
by the CPU during network operations using a component-
based energy model. We consider the energy model pro-
posed and validated by [27], which we also validated using
power meter measurements. Using detailed CPU usage logs
and packet traces, this model is able to identify the amount
of energy consumed by the CPU during interrupt handling
and network stack processing, as a portion of overall en-
ergy consumption. We perform energy measurements using
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this model for several instrumented Android devices running
both constant bit rate (CBR) and best effort network applica-
tions. Surprisingly, we find that the CPU is responsible for
a significant portion of the overall system energy consump-
tion (CPU, NIC, other processes). This is especially true for
WiFi at high data rates, where the CPU dominates overall
energy by consuming more than 60% of total energy. Even
for energy-intensive LTE networks, the CPU still accounts
for up to 20% of overall energy usage.
Reducing CPUEnergy Usage. We believe these observa-
tions warrant a fresh look at the role of CPU usage on today’s
network-driven mobile devices. Specifically, we examine
two different approaches to reduce the significant energy
consumption in today’s mobile CPUs. First, we study the
current network stack implementation in Android, and look
for ways to reduce CPU load by reducing memory copies.
While this is a known technique for improving network per-
formance in wired networks, we believe it will have signifi-
cant impact on CPU energy consumption in mobile devices.
Second, we consider a much more drastic approach: min-

imizing CPU load by offloading network stack processing
to the wireless basestation. Stack processing includes data
copying, packetization, andmanaging the TCP/IP stack. The
intuition for offloading is simple: network stack processing
is often complicated and computationally costly, and the re-
sulting end-to-end traffic management (e.g., TCP) performs
poorly over wireless links, especially at high data rates.
A wireless device offloads its network stack by commu-

nicating directly with its basestation using basic traffic seg-
ments. Assuming the basestation is cooperative and has suf-
ficient resources (buffers, processing power), the basestation
effectively acts like an end-to-end proxy that manages TCP
endpoints for each of its mobile device clients. Not only
does the basestation reduce computation at the mobile de-
vice, but it eliminates the role of wireless channel loss from
TCP congestion management [6], and addresses the problem
of ACK contention on the wireless channel [15].
We carefully evaluate both approaches for reducing CPU

energy cost. We implement and test the impact of one-copy
communication on CPU energy consumption in Android.
We then implement TCP offloading for several Android ap-
plications, and evaluate its impact on CPU energy consump-
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Figure 1: The ratio of the CPU-networking energy consumption against the total energy consumption.

tion on WiFi networks for a range of signal strength and
transmission rates. Our results are promising: for today’s
WiFi connections (<24Mbps), one-copy and TCP offload
already achieve considerable CPU energy savings, 10% and
40%, respectively. As the wireless capacity continues to in-
crease, (e.g., 100–200Mbps), the estimated gain becomes
substantial, 40% for one-copy and 60% for TCP offload.
As a first step, our results show that additional work is

warranted to further understand the pros and cons of TCP
wireless offloading as an energy management tool. We dis-
cuss unanswered questions and future directions in §7.

2. CPU ENERGY CONSUMPTION

With the recent availability of componentized power mod-
els, we can now quantify the energy consumed by individ-
ual components of a mobile device [29]. Here, we study
the role of the CPU in energy consumption due to network
operations, by measuring energy consumed by the CPU dur-
ing WiFi or LTE transmissions. We show that, surprisingly,
the CPU often consumes even more energy than the wire-
less NIC, especially for WiFi transmissions. This suggests
that significant energy savings can come through optimizing
CPU operations due to network transmissions.

2.1 Measurement Setup

Our analysis uses the componentized energy models [27]
to measure the energy consumed by the CPU and wireless
NICs. The models estimate the detailed energy consumption
of each component from CPU usage logs and packet traces
captured by tcpdump. Prior work shows that the models can
estimate energy consumption of individual components, and
incurs less than 8% error compared with physical power me-
ter readings [27]. Using a Monsoon power meter, we also
validate the energy models ourselves (see Appendix).
Our measurements use two popular Android smartphones,

SamsungGalaxy S3with Android 5.1.1 and SamsungGalaxy
Note with Android 4.3. We obtained detailed power models
for both phones from the authors of [27]. Our measurements
target Android because it is flexible to instrument and pro-
file. Since implementations of the network stack on different
smartphone platforms generally follow the same RFC stan-
dards, we expect that our observations will apply to other
platforms. We leave this to future work.
CPU and Packet Logging. We build a logging tool that
records the per-core CPU frequency and utilization reported
by the Android OS (once every 500ms), and run tcpdump to

collect packet traces. The logging overhead is low — run-
ning it with tcpdump simultaneously only increases the CPU
utilization by at most 5%.
Baseline Energy Consumption. We verify that without
running any networking application, the CPU utilization is
at most 7% (for all background OS processes). We use the
power meter to measure the total power consumption during
this state. The S3 phones consume 150.2mW and the Note
phones consume 203.9mW. In our analysis, we subtract this
value (referred to as Ebk) from the CPU energy results to re-
flect the CPU energy consumption purely due to networking.
Measurement Scenarios. We consider two common
network-intensive applications: constant bit rate (CBR) video
streaming and best effort file transfer, e.g., photo/video shar-
ing. We implement both types of traffic workloads in our
bareboned network apps, which only transfer data, and ex-
periment with video/file sizes between 1MB and 100MB.
For CBR streaming, we use streaming rates between 1Mbps
and 24Mbps supported by today’s streaming services [1].
We include experiments on bothWiFi (802.11n on 2.4GHz)

and cellular networks (AT&T LTE and HSPA). We test both
downlink and uplink transmissions, for a range of (aver-
age) signal strengths (−90dBm to −30dBm for WiFi and
−100dBm to −65dBm for cellular). To reduce interference
and contention, we configure our WiFi AP away from exist-
ing active channels; for cellular tests, we perform measure-
ments after midnight to reduce the impact of traffic dynamics
at the basestation. For statistical significance, we repeat each
of our experiments at least 10 times. Since standard devia-
tion across measurements is uniformly low (less than 2.5%),
we only show average results in our discussion.

2.2 Results
We first compare the energy consumption of the CPU and

the wireless NIC due to networking. Figure 1 plots, for both
WiFi and cellular, energy consumed by the CPU (specifi-
cally for networking) as a portion of total energy cost of
the NIC, CPU (for networking), and OS background pro-
cesses. Specifically, we study the normalized CPU energy
consumption, ECPUnet

ECPUnet+ENIC+Ebk
. Because results are con-

sistent across various data sizes, for brevity we only show
the results for sending 100MB data.
For WiFi transmissions, the CPU is a major energy con-

sumer, contributing to 20–60% of the total energy. The por-
tion for uplink is lower because the NIC consumes more
power in transmission mode. For best effort data transfer,



CBR Rate Logging OS Proc. WiFi Driver Network Stack
4Mbps 1.7% 3.3% 10.2% 31.5%
24Mbps 2.3% 4.6% 15.6% 43.2%

Table 1: CPU utilization during WiFi CBR streaming

CPU energy cost dominates more at higher RSS values: as
the link rate increases, physical transmissions become more
energy-efficient (more bits per Joule) while the CPU pro-
cesses more data. The same applies to CBR streaming at
higher streaming rates, i.e. CPU must process more data at
higher streaming rates. Finally, even for power-hungry LTE
links, the CPU consumes up to 20% of the total energy.
CPU Usage Breakdown. Next we quantify how different
tasks contribute to CPU usage. In our scenarios, these tasks
include processing the network stack, running our logging
app and tcpdump, processing the NIC driver, and OS back-
ground processes. We measure their contribution by record-
ing the per-process CPU utilization using our logging tool.
Our results are consistent — network stack processing is the
dominant CPU consumer. Table 1 shows the CPU utiliza-
tion of different components for WiFi CBR video streaming.
Network stack processing is responsible for more than 50%
of the CPU activities. We also confirm via experiments that
CPU energy consumption is determined jointly by CPU uti-
lization and CPU frequency1. In fact, the energy consump-
tion scales linearly with both CPU frequency and utilization.
Together, these results indicate that the CPU usage and en-

ergy consumption are dominated by network stack process-
ing. Simplifying the CPU’s role in network stack processing
will likely provide significant energy savings.

3. REDUCING CPU LOAD

Motivated by the above findings, we revisit the Android
network stack processing to identify ways to reduce CPU
usage. We show that without modifying the wireless NIC,
there are two potential directions, i.e. reducing local data

copy and TCP offload. While both methods have been pro-
posed to improve throughput for high speed networks such
as Gigabit Ethernet, we seek to evaluate their effectiveness
on reducing energy costs for smartphones.
Android Network Stack Processing. The Android net-
work stack processing consists of three sequential tasks: copy-
ing data between the network (socket) buffer and other buffers
(file, application); processing Layer 2 to Layer 4 protocols;
and packetization. As an example, Figure 2 illustrates the
stack processing during data upload, where an application
seeks to upload data stored on the smartphone to a remote
server via WiFi, e.g., uploading an image or video to the
server. In this case, after DMA buffers the data to the kernel,
the kernel copies data to the userspace (application buffer)
and then back to the socket buffer. Data then goes through
the network stack processing, and finally is packetized for
the NIC to send out. Download follows a similar process.
We identify two sources of inefficiency in this design. First,

1Modern mobile OS actively adjusts CPU frequency based on the
total workload of all running processes.
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Figure 2: One-copy improve CPU efficiency.

before entering the NIC, the target data is being copied twice
(between the kernel and userspace). In this process, the ap-
plication acts as an inefficient intermediary that fetches the
data from the disk storage to the socket. This is unnecessary
and inefficient. Second, current TCP stack on smartphones
is not designed with energy efficiency in mind. For exam-
ple, common TCP implementations ACK every one or two
packets. In addition to introducing extra processing over-
head, these ACK packets also contend with data packets,
further lowering wireless bandwidth utilization (as the NICs
are not full-duplex). As a result, the active time of the CPU
is longer, leading to higher energy consumption.
With these in mind, we explore two directions that reduce

CPU load by minimizing network stack processing.
1. Reducing Local Data Copy. The first method is to
reduce unnecessary local data copy which consumes CPU,
e.g., the two copies shown in Figure 2(a). In fact, recent
work on data center networking has shown that reducing lo-
cal data copies effectively lowers server CPU usage and im-
proves throughput for Gigabit Ethernet [16, 31]. Similarly,
we explore if reducing local data copy achieves benefits for
smartphone networks. We present preliminary results in §4.
2. Offloading TCP/IP. When it comes to the transport
protocol, the common wisdom is to modify the existing de-
sign, e.g., replacing TCP with UDP, or come up with a com-
pletely new protocol, e.g., QUIC [3]. These approaches,
however, require server-side support and the same multi-
layer stack processing (from transport, IP to link layer). In-
stead, we consider an alternative that does not require any
server-side support — offloading TCP/IP protocol tasks to
a (trusted) wireless access point or basestation. TCP of-
fload [26] has been proposed for high speed connections like
Gigabit Ethernet, where processing overhead of the network
stack becomes significant. In our work, we seek to under-
stand whether TCP offload applied to smartphones can effec-
tively reduce CPU usage and improve both energy efficiency
and performance. Our initial results are in §5.
One can further improve CPU efficiency by eliminating

packetization or optimizing the driver. These, however, re-
quire advanced NIC hardware which is not yet available for
smartphones. Thus we do not consider them in this study.

4. ONE-COPY

We now study the first method to reduce CPU usage by re-
ducing local data copy. Consider an application that down-
loads a file and stores it in the local storage. Today, this is
done by getting the data from the TCP socket buffer (e.g.,
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Figure 3: Initial results on the benefits of one-copy using the WiFi and loopback experiments.

via recv()) and then writing the data to a local file descriptor
(e.g., via write()). This incurs two rounds of data copy, one
from the kernel’s network module to the application buffer,
the other from the application buffer to the file system.
However, most file transfer and streaming applications do

not modify the data. In this case, copying the same data
twice is unnecessary. Instead, we let the OS directly copy
the data from the TCP socket buffer to the local file buffer,
or vice versa (Figure 2(b)). This bypasses the application
buffer, eliminating one local data copy. Note that ideally, the
residual data copy (from file to socket) can also be elimi-
nated, i.e. via zero-copy [31]. This, however, requires NIC
hardware support, which is not yet available for smartphones.
Implementation. Linux supports one-copy via two sys-
tem calls: sendfile() and splice(). sendfile has been supported
by Android since version 1.0 while splice has recently been
ported to Android 5.0. One can enable one-copy in An-
droid by replacing the TCP socket send() and recv() calls
with sendfile() and splice(), respectively. No infrastructure
support or special hardware is needed. We follow the same
procedure to modify our networking applications mentioned
in §2. For the S3 phones we experiment with both downlink
and uplink but for the Note phones we only experiment with
uplink (since Android 4.3 does not support splice()).

4.1 Initial Evaluation

We compare the two-copy and one-copy implementations
under the sameWiFi network conditions (same location, sig-
nal strength and no background traffic). Because S3’s WiFi
link rate is bounded by 24Mbps, we also run both implemen-
tations using the smartphone loopback interface to emulate
the performance under higher wireless rates. We examine
the normalized CPU energy saving: 1 −

ECPU (1copy)
ECPU (2copy) and

the absolute power saving in watt, PCPU (2copy)− PCPU (1copy).
WiFi Results. Figure 3(a) plots the normalized energy
saving for CBR streaming using S3 at various streaming
rates (the result of Note is similar and thus omitted). The
energy saving rate is small (<10%). The results for best ef-
fort file transfer are similar. We think this is because the
WiFi link rate (<24Mbps) is much lower than the memory
copy rate, the majority of CPU cycles are spent on protocol
stack processing rather than local data copy.
Loopback Results. With new RF technologies, wire-
less link capacity is constantly growing. The newly avail-

able 802.11ac radios can achieve 1.7Gbps and the upcoming
60GHz chip will offer up to 6.7Gbps per link at a similar en-
ergy cost [5]. This trend motivates us to examine if one-copy
will become (more) beneficial at higher wireless link rates.
Since these new technologies are not yet ported to smart-

phones, we emulate a high-speed network connection us-
ing the smartphone’s loopback interface, i.e. a local client
program connects to a local server program listening on the
loopback interface. We validate via measurements that the
CPU overhead of the loopback experiments is almost identi-
cal to that of the WiFi experiments minus the CPU overhead
of the WiFi driver (resulted omitted for brevity). Therefore,
we use the CPU energy saving (by one-copy) seen from the
loopback experiments to estimate those obtained from fu-
ture high-speed WiFi experiments. Furthermore, since CPU
is the only power consuming component, we measure the en-
ergy consumption using the Monsoon power meter. We also
use it to validate the CPU energy model (see Appendix).
Figure 3(b) plots the normalized CPU energy saving of

one-copy for CBR streaming. As the streaming rate increases,
the overhead of memory copy becomesmore significant, and
one-copy achieves up to 40% CPU energy reduction over
two-copy. Figure 3(c) plots the absolute CPU power sav-
ing which increases with the streaming rate. The estimated
power saving can reach 100mW at 100Mbps, and 300mW
at 240Mbps. For comparison, today’s WiFi radios in gen-
eral consume no more than 900mW power [27], and the up-
coming 60GHz radios can transmit at more than 1Gbps with
700mW power [5]. Thus without any hardware change, the
estimated 100-300mW power saving is significant.

5. TCP OFFLOAD

The second approach for reducing CPU load is to elimi-
nate TCP/IP stack processing by offloading (or relocating)
the process to the associated AP. This approach is comple-
mentary to the one-copy approach.
Offloading the entire TCP/IP stack to a (trustable) AP is

feasible since for most of today’s networks, mobile clients
communicate directly with the associated AP. In home and
enterprise environments, i.e. private networks, these APs are
trustable. Consider the architecture shown in Figure 4. The
smartphone OS only implements a very thin layer 2 network
stack. At the start of a flow, the smartphone sends a request
of TCP connection to the AP. The AP acts as a proxy, estab-
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Figure 4: The architecture of TCP/IP stack offloading.

lishes a TCP connection with the remote device, and sends
back a token to the smartphone. Using this token, the smart-
phone can send/receive packets to/from the AP who then
forwards the data to the other end. No modification to the
remote device is needed.
This design requires modifications at the AP, supporting

two modes: TCP offload and normal TCP (for backward
compatibility). It requires a new set of socket APIs on the
smartphone OS, e.g., a wrapping of the raw socket inter-
faces. The overhead for initializing a TCP offload session is
just a pair of handshake packets between the smartphone and
the AP (byte-level), which is negligible for large flows (over
megabytes), e.g., file transfer. In this paper we only consider
large flows and leave the run-time decision on whether to
turn on TCP offload to future work.
Implementation. We re-implement the two network-
ing apps (file transfer and CBR streaming) using layer 2
raw sockets, bypassing TCP/IP stack. Using raw sockets,
we append data directly after the Ethernet header, with the
AP MAC address as the destination. We implement an AP
by configuring a standard Macbook Pro (Intel Core 2 Duo
2.26GHzCPU, BroadcomBCM43224NIC) as aWiFi hotspot
and connect it to the Internet using Ethernet. We implement
a proxy program on the laptop, receiving/sending layer 2
packets from/to the smartphone, and forwards data to/from
a remote TCP server. Using tcpdump traces, we verify that
our implementation does not introduce any packet loss.
For simplicity, our current design assumes that the Ether-

net bandwidth is larger than the wireless bandwidth. In prac-
tice, AP’s Ethernet connection rate can drop below the wire-
less link rate. This can be easily handled by running simple
link layer flow control mechanisms, e.g., explicitly control
flows by either reserving bits in data frame like XON/XOFF
or alerting channel conditions like RTS/CTS, and applying
buffering to absorb transient bursts.

5.1 Initial Evaluation

Using both the WiFi and loopback interfaces, we study
the benefits of TCP offload. As our results are consistent,
we only show the S3 uplink results for brevity.
CBRWiFi Results. We consider the CBR streaming case
where the same amount of data packets is transmitted under
TCP offload and normal TCP. Figure 5(a) and 5(b) plot the
normalized CPU energy saving and the absolute power sav-
ing of TCP offload (against normal TCP), respectively. We
see that the energy benefits of TCP offload scales gracefully
with the streaming rate. When the transmission rate goes

beyond 20Mbps, offloading TCP leads to 40% CPU energy
reduction, and 400mW power reduction.
We also compare TCP offload to UDP (for the wireless

hop), which simplifies the smartphone stack processing but
requires the same AP-as-proxy architecture or remote server
support. With the current WiFi data rates, UDP achieves the
similar energy efficiency. However, as we will show next,
when the wireless data rate increases further, UDP becomes
much less efficient than TCP offload.
Loopback Results. We repeat the above experiments
using the loopback interface. Figure 5(c) and 5(d) report the
normalized CPU energy saving and the absolute power sav-
ing against normal TCP. Surprisingly, at 40Mbps and higher,
UDP’s CPU energy cost exceeds that of normal TCP. This is
because, as a datagram protocol, common UDP implemen-
tations maintain packet boundaries during transmissions and
thus require multiple system calls per packet going through
layer 4 to layer 2 processing. In contrast, TCP (and TCP
offload) are streaming-based. By actively batching opera-
tions across different layers, they become much more CPU-
efficient at higher throughput. We confirm this by increas-
ing the MTU of the loopback interface and the UDP packet
size to 20KB (compared with 1.5KB) and observing signif-
icantly higher energy efficiency (Figure 5(c) and 5(d)). Un-
fortunately, in practice, such large MTU configuration is not
supported by WiFi NICs and APs.
More importantly, compared with both UDP and normal

TCP, TCP offload is consistently the best. When the through-
put is more than 100Mbps, it saves more than 60% of CPU
energy or 600mW power over normal TCP.
Best-effort WiFi Results. In addition to reducing CPU
processing, TCP offload also improves the utilization of wire-
less links by removing TCP ACKs. To quantify this benefit
(and the related energy saving), we compare TCP offload
and normal TCP by running the best effort file transfer under
various WiFi signal strengths. Figure 6(a) shows that TCP
offload always outperforms normal TCP, achieving as much
as 40% throughput improvement. Such throughput improve-
ment also translates into energy saving, i.e. file transfer fin-
ishes faster at higher throughput. Figure 6(b) shows that
the normalized overall energy saving (CPU + NIC) scales
linearly with the normalized throughput gain, e.g., a 40%
throughput gain translates into 30% energy saving.

6. RELATED WORK
Optimizing OS Stacks. Reducing CPU copies has been
proposed within the traditional OS community [10, 22, 28,
30]. Recent works demonstrate the necessity of CPU reduc-
tion [16, 19, 31, 33] and TCP offload [26] to improve band-
width of the Gigabit Ethernet. Our work differs by applying
CPU reduction and TCP offload techniques to smartphones.
To the best of our knowledge, we are the first to demonstrate
its benefits in mobile systems from an energy perspective.
Transport ProtocolDesign. To improve bandwidth, many
have proposed to modify or replace TCP protocols for mo-
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Figure 5: TCP offload for CBR streaming, uplink direction, S3 phones. (a)

and (b) are from componentizedmodel. (c) and (d) are actual measurements.
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Figure 6: TCP offload for best effort

file transfer, S3 phones.

bile networks, e.g., the recent UDP-like QUIC protocol [3],
while others everage cooperative AP/basestation to improve
network performance [6, 13]. Our work differs by com-
pletely moving the TCP/IP stack out of mobile devices to
improve their energy efficiency. Our approach can poten-
tially be combined with these existing works to further im-
prove networking performance.
Mobile Energy Saving. For software-based solutions,
many have designed energy-aware adaptation techniques [2,
4, 7, 14, 20, 21, 25], and mobile cloud computing that of-
floads intensive computing tasks to the remote server (e.g., [11,
12, 18]). Examples of hardware-driven solutions include
energy harvest [17], downclocking [23, 24], and OS-level
power management [9, 32]. Our work differs by explor-
ing a new and complementary dimension, i.e. trimming the
network stack, which effectively reduces CPU energy cost.

7. SUMMARY AND FUTUREWORK

Our proposals for reducing CPU usage in networking op-
erations have produced promising initial results. Using to-
day’sWiFi configurations (<24Mbps), our techniques achieve
moderate energy savings, i.e. 10% for one-copy, and 40%
for TCP offload. And as wireless link capacity increases
(>100Mbps), the estimated improvements becomemuchmore
substantial, e.g., 40% for one-copy and 60% for TCP offload.
Following this first step, more work is required to explore

and compare methods of CPU usage reduction. Here we
discuss possible deployment challenges of our techniques,
and open research problems related to our work.
- Practical Deployments: Because one-copy bypasses ap-
plication buffers, applications can no longer access/modify
data during transmission. This might require decoupling
data computation from data transmission in some streaming
video applications or encrypted communications. TCP of-
fload requires a cooperative AP or basestation, which is fea-
sible for home or enterprise WiFi APs who seek improved

performance. For cellular providers, TCP offload can be of-
fered as a premium service to customers willing to pay for
better energy efficiency and performance.
- Handling Packet Losses: TCP offload assumes reliable
transmissions on the last hop to the mobile device. Modern
MAC protocols like 802.11n/ac already implement ARQ and
link adaptation mechanisms to minimize and recover from
wireless losses. Upon persistent failures (e.g., hardwaremal-
function), link layer losses will propagate to the application
layer. To minimize such impact, we need link layer designs
that track packet losses and notify the application layer.
- Offload Mode Selection: TCP offload is not suitable to all
scenarios. Smartphones need to decide whether to offload
network stack based on AP/basestation availability, flow prop-
erties (e.g., large vs. very small flows), and channel condi-
tions (low vs. high loss). We need to build and integrate
such management function into smartphone OS and evalu-
ate its performance under diverse real-life conditions.
- Efficient AP Design: TCP offload introduces extra process-
ing overhead at the AP. At 24Mbps, such processing takes
no more than 5% CPU utilization on our 6-year-old laptop.
There is still large room for improvement: currently we use
the traditional libpcap to receive and forward packets; by
switching to high performance packet processing engines
like DPDK with further optimizations, the AP processing
efficiency should be at least doubled.
- Applications to Wearables and IoT:Wearable devices have
higher requirements for energy efficiency. We can apply
similar methods to trim their network stacks, e.g., offload
TCP to associated smartphones. Here, application and flow
properties can be very different, e.g., more short flows, but
more stable connections so lower overhead from token re-
quests. A unique challenge here is that we must be aware
of the impact of TCP offloading on the smartphone energy
level. Balancing energy consumption of smartphones and
wearables is an interesting open question.
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Appendix: Validating Energy Models

We validate the energy models using power meter measure-
ments. First, we validate the CPU energy model by run-
ning a bare-bone application that drives the CPU to different
utilization levels, recording both the CPU utilization (which
drives the model) and the power meter readings. Figure 7(a)
shows that the model faces less than 10% error compared
with power metermeasurements. This result aligns with [27].
Experiments on loopback follow a similar result since it by-
passes NIC and consumes CPU power only. Next, we vali-
date the WiFi NIC power model. We runWiFi transmissions
at different CBR rates, and measure the total energy con-
sumption using the power meter. We then predict the CPU
and NIC energy consumption using the CPU and NIC power
models, and compare the sum to the power meter readings.
Figure 7(b) shows that the predicted sum aligns with the
power meter results. Together, these experiments validate
the componentized power models.
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Figure 7: Validating the componentized energy models

by comparing them to the power meter readings.


