
Generic External Memory for Switch Data Planes
Daehyeok Kim1, Yibo Zhu2, Changhoon Kim3, Jeongkeun Lee3, Srinivasan Seshan1

1Carnegie Mellon University, 2Microsoft Research, 3Barefoot Networks

Abstract
Network switches are an attractive vantage point to serve
various network applications and functions such as load bal-
ancing and virtual switching because of their in-network lo-
cation and high packet processing rate. Recent advances in
programmable switch ASICs open more opportunities for
offloading various functionality to switches. However, the
limited memory capacity on switches has been a major chal-
lenge that such applications struggle to deal with. In this paper,
we envision that by enabling network switches to access re-
mote memory purely from data planes, the performance of a
wide range of applications can be improved. We design three
remote memory primitives, leveraging RDMA operations,
and show the feasibility of accessing remote memory from
switches using our prototype implementation.

1 Introduction
Modern data center applications such as key-value stores and
network functions such as load balancing demand high I/O
rates or high packet processing rates. Traditionally, many of
these applications are implemented in software that runs on
general purpose CPUs. However, technology trends make this
solution less desirable – CPU performance improvements (i.e.,
Moore’s Law) have slowed and application demands continue
to increase at a staggering rate.

The research community has turned to specialized proces-
sors, specifically the high speed packet processing ASICs
at the core of modern Ethernet switches, to help meet the
processing demands of these applications [19, 23, 26, 29].
Given similar energy and monetary budget as a commodity
server, switches offer 1000× higher packet processing rates
and processing latency of sub-microseconds. Recent advances
in programmable P4 switches [3] enable more flexible appli-
cation logic on these processors.

While programmable switches provide some important
performance benefits, they also create unique challenges, one
of the most significant being limited memory space. Data
center switches require memory bandwidths of 32× 100Gbps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVII, November 15–16, 2018, Redmond, WA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6120-0/18/11. . . $15.00
https://doi.org/10.1145/3286062.3286063

(32 100 Gbps ports) or more. As a result, they rely on only
using relatively expensive but fast SRAM or TCAM. Because
these are located on the chip, they are limited to tens of MB,
which already contributes to a significant fraction of switch
hardware costs.

Unfortunately, all of the above on-switch applications have
trade-offs between performance and memory usage. For ex-
ample, memory size directly determines the cache hit rate
of in-network caches [19], and the accuracy of sketches [23].
Applications such as load balancing [26] and monitoring [29]
have to fall back to slower, CPU-based workarounds when
memory is exhausted. Last but not the least, even the most
basic function of switches – packet forwarding – can suffer
from limited memory space. These issues are further exac-
erbated when these applications run on the same switch and
must share memory with each other and basic forwarding.

One solution to this issue is designing a switching ASIC
that has internal custom logic and wires to access external
DRAM [4] on the switch. Unfortunately, this proves to be
very expensive for several reasons. To provide the bandwidth
needed for switching, a ASIC chip would need numerous
parallel DRAM modules. This combined with the necessary
DRAM controller and wiring within the chip adds significant
complexity and cost to the switch. This approach also leads to
an inflexible usage of the DRAM because the memory can be
used either for packet buffers or one or a few select look-up
tables depending on how the DRAM is physically connected
to the associated modules within the ASIC chip. Moreover,
the chip has a fixed amount of external-memory-capacity
that is determined at the chip design and manufacturing time,
resulting in limited scalability. The end result is that on-switch
external DRAM is not popularly used by vendors in today’s
single-chip switches.1

In this paper, we explore the possibility of repurposing the
affordable DRAM installed on data center servers to expand
the memory available to a switch’s data plane. To achieve
this goal, instead of building another switching ASIC that has
a custom external-DRAM-access capability, we simply reuse
an existing programmable switching ASIC built only with
on-chip memory. More specifically, we trade the data plane
bandwidth of such a chip for the bandwidth needed to access
the external DRAM. For example, a ToR switch may reserve
some DRAM space on the servers under it, and turn them
into a remote memory pool accessible from the ToR switch
directly through the Ethernet links connecting between the
servers and the ToR.

1Some high-end multi-chip switches have additional DRAM connected to
the data plane. Such switches are much more expensive and thus uncommon
in data centers [32].

1

https://doi.org/10.1145/3286062.3286063

Current commodity hardware and network deployments
are well-suited for enabling this approach. First, since half
or more than half of the ToR ports are connected to servers,
and data center traffic is sparse [35], there is usually sufficient
amount of spare bandwidth between the ToR and this potential
memory pool. Second, RDMA-capable NICs (RNICs) can
expose the memory access at line rate using the RDMA over
Converged Ethernet (RoCE) [16, 17] protocol, without any
CPU involvement. Third, emerging programmable switches
can implement a subset of the RoCE protocol and maintain
the needed connection state to communicate with RNICs.

We particularly consider three use cases for remote switch
memory. First, we describe remote packet buffer that aims to
increase the switch buffer size from O(10 MB) to O(10 GB),
or by 1000×. With this, we may be able to largely reduce,
if not to eliminate, the microburst incast drops at last hop.
Second, we consider a remote lookup table that increases
the exact-matching table size by 1000× or more. This may
help applications that demand large tables avoid the CPU-
based slow path. Finally, we examine remote state stores
that improves the performance of data plane monitoring. We
will elaborate these example scenarios in §2 and preliminary
design in §4.

To verify the feasibility of using remote memory, we im-
plement and evaluate three basic primitives designed for the
above use cases on commodity RNICs and a P4 switch. In
§5, we show that the remote memory on a server offers up to
95.6% RNIC bandwidth with 1-2 µs extra latency, with abso-
lutely 0% CPU overhead. Multiple leading cloud providers
have widely deployed RNICs [28, 36] and are also gradually
on-boarding P4 switches. In such environments, there is no
additional infrastructure costs of deploying our design, except
for the reserved DRAM on servers.

Fundamentally, this paper introduces the notion of “mem-
ory hierarchy” to programmable switches, for which such
concept was absent. Current P4 switches just have an on-chip
memory. Once the switch faces workloads that need larger
memory than the cache, it cannot gracefully handle it with
low cost. This memory hierarchy we introduce draws parallels
to what DRAM did for CPU and CPU cache. We believe that
this work can inspire and ease the design of future in-network
applications that require large memory on the data plane. Fu-
ture steps include concretizing the systems described in §2,
and addressing the challenges explained in §7.

2 Motivating Examples
In this section, we examine three representative applications
that are limited by memory availability on switches. We use
these applications to motivate the need for remote memory
primitives. The below provides a high-level description of
how the primitives can benefit each use case and we leave the
design details to the later sections and future work.

2.1 Mitigating Packet Losses
The problem: Congestion drops due to bursty incasts are very
common in data center networks. For example, consider the
typical last-hop congestion in Figure 1a. Suppose all links are

40 Gbps, the ToR switch has 12 MB packet buffer, and 50 MB
traffic comes from eight uplinks at line rate and goes towards a
single receiving server. It will take at least 50MB/40 Gbps =
10 ms to receive all the traffic, however the 12 MB packet
buffer will be filled within 12MB/(8− 1)/40Gbps ≈ 0.34ms
and start dropping packets! This is well explained by past
literature [8, 35].

To avoid such packet drops, Priority Flow Control
(PFC) [15] has been proposed. Unfortunately, it leads to other
serious problems [36] such as occasional deadlocks. Also,
while packet detour [34] can reduce packet drops, it requires
switch and end host modifications. Another solution is to in-
crease packet buffer on switches, e.g., to more than 50 MB,
so that the whole burst can be absorbed. However, data center
operators and switch vendors are reluctant to do that as it
significantly increases costs and cannot scale to larger incast.
A potential solution: Imagine the ToR switch has a data-
plane channel that enables it to extend its packet buffers by
reading and writing DRAM placed in any servers under the
ToR (the dashed box in Figure 1a). When incast occurs and the
queue on switch starts to build up, the switch can start writing
all the following packets bound to the congested queue into
a remote buffer located in one or multiple servers (the red
dashed lines in the figure). Then, once the queue on the switch
is fully drained, the switch can start to read the packets back
from the remote buffer and continue forwarding them.

This packet buffer extension would significantly reduce, if
not eliminate, last-hop congestion drops, because in a com-
mon Clos topology, the total uplink bandwidth is equal to or
smaller than the downlink bandwidth. Since DRAM is much
more affordable than on-chip buffer memory, operators can
reserve O(1 GB) memory on each server for absorbing the
bursts. Before that >10 GB remote memory is all filled, any
bursty incast conditions should have passed, or (in the case of
persistent congestion) end-to-end congestion control based on
ECN [36] or delay [28] should have slowed traffic. In short,
this solution enables a “lossless” last-hop ToR switch, without
the caveats of PFC.

2.2 Extending Lookup Tables
The problem: Some applications and network functions re-
quire large lookup tables for handling different flows. We
use a concrete example in Microsoft Azure to illustrate this.
Azure offers a bare-metal hosting service, where customers
provide their “blackbox” servers, usually specialized database
systems, or security-related middleboxes. The cloud provider
hosts them in data centers, and must provide connectivity
to the VMs of the same customer, as shown in Figure 1b.
This means that the virtual IPs of bare-metal boxes and VMs
should be translated to physical IPs that can be forwarded in
the physical network.

Since the cloud provider cannot easily install specialized
hardware (e.g., smartNICs [14]) or software (e.g., virtual
switch [30]) on these blackboxes, such translation has to be
done outside the blackboxes. One option is pairing each of
the blackboxes with a dedicated server that runs smartNIC

2

Remote buffer servers

(a) Extending packet buffers for mitigating
packet losses due to incast.

Customers'
bare-metal servers

Remote
 table server

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

Customers'
VMs

(b) Extending lookup tables for bare-metal
hosting.

Remote
telemetry servers

(c) Extending state stores for network
telemetry.

Figure 1: Example use cases of remote memory for network switches. The solid black and dashed red lines indicate the data path for
transmitting original packets and accessing remote memory, respectively.

or virtual switch. The cost of such an approach is very high.
Another option is moving a virtual switch functionality into
the ToR switch. However, the most modern merchant silicon
switches are equipped with tens of MBs of SRAM for look-
up tables. Based on our experience in production, this is at
least one order of magnitude less than a typical virtual switch
consumes for virtual network address mappings.
A potential solution: A pure data-plane channel to extend
the lookup table to remote memory may be a good answer to
this scenario. We maintain the complete virtual-to-physical
address mapping table on servers in a sharded fashion and let
the switch fetch the entries on-demand. The local memory
on switches serves as high-speed cache to reduce the remote
memory access. However, even if the traffic pattern leads to
frequent cache misses and remote fetching, there is no CPU
overhead or software latency.

Although we use a virtual switch as an example, this idea
can benefit many other on-switch applications including key-
value stores (e.g., NetCache [19]) or load balancers (e.g.,
SilkRoad [26]). These applications typically fall back to the
software (i.e., either on server or switch’s CPU) whenever the
memory in the data plane is insufficient for the size of their
working set. With the remote lookup table, however, such
slow-path forwarding through the software can be eliminated
or minimized. Of course, this will require careful co-design
of data structure in remote memory and the switch data plane,
as we will explain in §7.

2.3 Extending State Store for Telemetry
The problem: Switches have unique advantages in network
telemetry or monitoring. First, they have access to state in-
formation available only in the network, such as the true
progression of queue length, the exact extent of congestion,
and exact table entries that are matched by each packet. Sec-
ond, the switching ASIC can perform monitoring tasks, e.g.,
per packet counting, at the rate of billions of packets per
second. However, the limited memory space either directly
determines the performance (like sketch systems [23]), or
again forces the monitoring system to fall back to software
frequently [29].
A potential solution: Programmable switches can generate
new packets based on the content of original packets. The
commodity RNICs support not only reading/writing mem-
ory, but also atomic Fetch-and-Add operation. Combining

Switch Control Plane
RDMA channel controller

Port

Switch Data Plane

DRAM

Memory access req./resp.
Incoming/outgoing packets RDMA initialization

RDMA NIC

Action Packet

Action Packet

Action PacketOn-chip registers

Figure 2: Overview of the proposed remote memory architec-
ture. Using our primitives, the switch data plane can utilize re-
mote memory region registered to RNICs by servers which are
connected to the switch. While this figure illustrates a remote
lookup table as an example, different types of data structures
are used for different primitives (e.g., ring buffer for remote
packet buffer).

these two, it is possible to extend the state-store for teleme-
try systems, as shown in Figure 1c. For example, the switch
can extract fields from original packets and perform RDMA
WRITE into certain remote memory address. This eliminates
the CPU cycles required for capturing and parsing packets in
previous systems. In addition, updating counters, as one of
the most important telemetry primitives, can be implemented
using RDMA atomic Fetch-and-Add. The number of coun-
ters can increase by 103× (e.g., 100 GB DRAM vs. less than
100 MB switch SRAM), without any CPU overhead.

2.4 Summary
The three examples above show that a pure data-plane channel
between switch and remote memory can benefit a wide range
of network functions. Fortunately, as we shall see soon in
§4, commodity hardware is ready for this architecture – P4
switches can craft RoCE protocol packets that communicates
with RNICs using one-sided RDMA operations.

3 Overview
In this section, we overview the design of the three remote
memory primitives to support the use cases described in §2:
(1) Packet buffer (2) Lookup table, and (3) State-store primi-
tive. The general architecture is shown in Figure 2. We design
the primitives with the following goals in mind.
Goal #1 – Easy to deploy on commodity hardware: The
remote memory primitives can be used in any Ethernet net-
works that deploy RDMA using the RoCE standard and pro-
grammable switches. For now, we assume that the remote
memory servers are equipped with RDMA-capable NICs

3

(RNICs) that are directly connected to the switches.2 We do
not require any hardware modifications on commodity RNICs
and switches. We design the primitives to be generic and mod-
ular, so that any data plane programs can use the primitives
to utilize remote memory while processing packets.
Goal #2 – No CPU involvement: Except for initialization,
the primitives do not require any involvement of CPUs, nei-
ther remote servers’ or switches’, while switches access the
remote memory. All memory access requests and responses
are processed entirely by the RNICs on the servers (the red
solid line in Figure 2). The CPUs are used only when initial-
izing and registering memory regions that will be accessed
by switches, and establishing an RDMA channel between the
RNIC and switches (the blue dashed line in the figure). This
property makes the server-side memory-extension architec-
ture low cost (no CPU overhead) and energy efficient.
The key design idea: Our key idea is to create an RDMA
channel between switches and remote servers so that the
switches can access remote memory via the channel even
without having RNICs on the switches and without involving
CPUs on the servers.

We realize this idea based on three insights. First, on Eth-
ernet networks with RoCE, RDMA requests and responses
are merely regular Ethernet packets with additional headers
supporting RDMA operations. This means that we can gen-
erate and process RDMA packets via any devices connected
to the networks. Second, emerging programmable switch-
ing ASICs [3] can manipulate, adding, or removing packet
headers at line rate. This enables us to design data plane ac-
tions to generate and process RDMA request/response packets
with low latency. Third, one-sided RDMA operations such as
RDMA WRITE, READ, and atomic Fetch-and-Add are pro-
cessed entirely by RNICs without the involvement of remote
servers’ CPUs. By leveraging such operations, we can make
the primitives simple and scalable since it does not require
any complex server-side components to control the memory
access from switches.

As mentioned earlier, we design the primitives as data
plane actions so that switch data plane programs can easily
adopt the primitives to utilize remote memory. The primitive
actions generate corresponding RDMA requests by adding
or manipulating RDMA headers on top of original or cloned
packets. An RDMA channel controller running on the switch
control plane and a server is responsible to allocate memory
regions on the server, set up an RDMA channel, and pass the
channel information including a remote queue pair number
(QPN), a base address of the registered memory region, and a
remote access key (Rkey) for the region to the data plane via
the switch control plane APIs.

4 Proof-of-Concept Design
We now explain in detail the current design of the primitives.
Packet buffer primitive: Using the packet buffer primitive,
the switch can store a packet to the remote packet buffer or

2In future work, it is possible to use any remote servers in the same RoCE
network after some technical challenges are addressed (§7).

load it back. Storing can be triggered by certain states in
the data plane (e.g., the egress queue length exceeds some
threshold or drains). The switch generates a RDMA WRITE
request containing the original packet to the remote RNIC.
To create such RDMA operation requests, the primitive adds
RoCE headers on top of a original packet and fills the header
fields with necessary information, such as an operation type
(i.e., WRITE or READ), a remote memory address, a QPN,
an Rkey to access remote packet buffer. We design the remote
packet buffer as a ring buffer and make the primitive maintain
the write and read offset pointer to the buffer so that it can
store and load packets from the right position of the buffer. In
the current prototype, we allocate the buffer to store full-sized
Ethernet frame in each entry.

Similar to storing, packet loading starts when a pre-defined
event (e.g., the egress queue length becomes some threshold)
occurs in the data plane. Specifically, the switch generates a
READ request and the RNIC immediately replies a READ
response. The switch must parse the READ response, decap-
sulate the RoCE headers, and passes the original packet to the
egress pipeline. In the current prototype, each load operation
fetches a single entire entry regardless of the original packet
size. The received READ response packet is also used as a
trigger for generating another READ request to fetch the next
packet in the remote buffer if exists. Also, to avoid packet
reordering, the primitive makes sure that until all packets in
remote buffer are read, the following new packets must also
be written to the remote buffer and read out in order.

As mentioned above, packet storing and loading starts or
ends based on a pre-defined condition (e.g., the current egress
queue length). Depending on the condition, end-to-end perfor-
mance may be affected (e.g., latency increases due to a packet
loaded too late). Finding a right condition to start loading
packets from remote buffer is our ongoing work.
Lookup table primitive: This primitive enables the switch to
look up the match-action table on remote memory for a given
packet. For example, the primitive action can be triggered
when a look-up miss happens on a local match-action table
on the switch. In the current design, the action generates
corresponding RDMA requests (1) to store the original packet
to the table on remote memory and (2) to load an ⟨action,
packet⟩ pair from the table. By bouncing the original packet to
and from the remote buffer, the switch does not need to store
the packet when waiting for the table entry. Upon receiving
the response from the RNIC, the switch parses the action and
applies it to the packet.

We design the lookup table primitive again using RDMA
WRITE and READ. Once the primitive is triggered, it first
calculates the target entry index in the remote table, based
on a user-defined hash function (e.g., hashing based on the
packet’s 5-tuple). Combined with entry size and base memory
address, which is initialized when setting up the RDMA con-
nection, it gets the target memory address. Then, it creates a
RDMA WRITE request based on the address and the packet
length and issues it to store the packet to the packet buffer

4

corresponding to the entry. Then it immediately generates
a RDMA READ request to fetch the entry ⟨action, packet⟩.
Upon receiving a RDMA READ response packet from the
RNIC, it extracts the action from the packet and remove RoCE
headers. Then, it applies the action to the original packet. Fi-
nally, the switch can (optionally) cache the table entry in local
SRAM, so that the same action can be applied to subsequent
packets of the same flow without accessing the remote table.
We verify that this can be done purely in the data plane.
State-store primitive: The state-store primitive enables the
switch to maintain various stateful objects such as counters
and meters on remote memory. We can use this primitive
for various purposes which require to store a large amount
of stateful objects, such as running multiple sketching al-
gorithms [23] or network measurements [29]. For instance,
one can easily implement sketching algorithm such as Count
Sketch [11] using the primitive even for a large number of
flows. If a packet matches to a certain sampling criteria, the
primitive action determines the address of the remote sketch
counter for the flow and updates the remote counter by issu-
ing an RDMA atomic Fetch-and-Add request to the RNIC.
Network operators can run any estimation algorithms (e.g.,
heavy-hitter detection) on the remote counter.

RDMA WRITE and atomic Fetch-and-Add operation can
be used to implement the state-store primitive. Here, we just
describe a state-store that just counts packets on per-flow
basis, which only requires Fetch-and-Add operation. Specifi-
cally, while an original packet is processed through the regular
pipeline, the primitive clones the original packet and truncates
the entire headers and payload of cloned packet to generate a
packet for an RDMA Fetch-and-Add request. It adds RoCE
headers to the cloned packet and fills the header fields with
the information corresponding to a Fetch-and-Add operation,
including the memory address of the remote store entry for the
flow. Since there is a maximum limit of outstanding RDMA
atomic requests that an RNIC can handle, we design this prim-
itive to maintain the number of outstanding requests and issue
a Fetch-and-Add request only if there is a room to issue more
requests. Otherwise, it accumulates the counter value and uses
the accumulated value when it can issue a new operation.
Overhead: Though our design does not have any CPU over-
head, it does consume extra bandwidth. In an RDMA packet,
RoCEv2 protocol adds 40 bytes (52 bytes in the case of Ro-
CEv1) of headers containing routing and transport informa-
tion in addition to an RDMA operation-specific header of 16
(WRITE/READ) or 28 bytes (Fetch-and-Add). In the case
of WRITE for storing packets, the bytes of original packet
is directly appended after those headers. These extra bytes
will consume link bandwidth between the switch and the
RNIC. Also, whenever the switch accesses remote memory,
end-to-end latency may increase and the throughput may de-
crease slightly. We will demonstrate the feasibility of our
approach by measuring the end-to-end performance and over-
heads in §5.

64 128 256 512 1024

Packet size (B)

0

10

20

L
at

en
cy

(µ
s) Baseline Lookup table primitive

(a) Latency overhead of
lookup table primitive.

64 128 256 512 1024

Packet size (B)

0

2

4

B
W

(G
b

p
s) State-store primitive

(b) Bandwidth overhead of
state-store primitive.

Figure 3: Overhead of accessing remote memory.

5 Preliminary Evaluation
In this section, our focus is to demonstrate the feasibility of
accessing remote memory from the switch, and to show that
it achieves desirable performance using microbenchmarks.
Prototype implementation: We have implemented a proto-
type of the remote memory primitives and testing data plane
programs in approximately 1400 lines of P4 [9] code. We
have compiled them to Barefoot Tofino ASIC [3] with Bare-
foot Capilano SDE [2]. Also, we implement the control plane
program in about 1000 lines of C and Python code. It initial-
izes a RDMA channel and allocate/register memory regions
on the server’s DRAM.
Testbed setup: Our testbed consists of a Barefoot Wedge-
100B programmable switch and three servers equipped with
a Intel Xeon E5-2609 CPU, 64 GB RAM, and a 40 Gbps
Mellanox CX-3 Pro NIC. The servers run Ubuntu 16.04 with
the kernel version 4.4.0. All three servers are directly con-
nected to the switch. We use two servers as communication
end-hosts and the remaining one as a remote memory server.
Packet buffer primitive: To verify the feasibility of using
the remote packet buffer, we evaluate how much traffic can be
handled by the primitive using a single remote buffer server.
We wrote a P4 program that first stores all incoming packets
to the remote buffer, and later loads and forwards them to the
destination port. For microbenchmark purpose, we manually
start the two steps respectively.

We measure the maximum traffic rate that the remote
buffer can handle without losing any packets. We use
raw_ethernet_bw in the Mellanox Perftest suite [7] to
generate packets at configurable data rate, up to 40 Gbps line
rate. The results show that the primitive can store 1500B MTU
sized packets arriving at the rate of 34.1 Gbps to the remote
buffer and forward the packets to their original destination at
the rate of 37.4 Gbps without packet loss. Beyond these rates,
though the peak throughput can be higher, we start to observe
that RDMA requests were occasionally dropped at the NIC.
As a baseline, we test native server-to-server RDMA WRITE
and READ throughput. The baseline is only 4.4% faster.
Lookup table primitive: We evaluate the lookup table prim-
itive by analyzing its impact on the end-to-end latency. Using
the primitive, we wrote a P4 program that fetches an action
entry from the remote table for every incoming packet, ap-
plies the action to each packet, and forward to the destination
port. As an example, we defined a custom action that modi-
fies the value of the DSCP field of IPv4 header to a specific
value stored in the remote table entries. We use NPtcp [6] to

5

measure the end-to-end latency with different packet sizes (64-
1 KB). Figure 3a shows the median end-to-end latency when
packets traverse the baseline and our prototype. Compared
to the baseline, a simple P4 implementation of L2 switch
without doing anything special, it only adds 1-2 µs latency on
average.
State-store primitive: To evaluate the state-store primitive,
we wrote a P4 program that counts the number of packets
transmitted between two end hosts using a counter in the
remote memory. We measure a link bandwidth consumed
by RDMA atomic Fetch-and-Add requests/responses to up-
date the remote counter as well as verify the accuracy of the
value in the counter. We ran raw_ethernet_bw to gener-
ate traffic with different packet sizes. Figure 3b shows that on
average, memory access requests generated by the primitive
consume 2.1 Gbps of link bandwidth between the switch and
the RNIC to update the remote counter while the updated
value is 100% accurate. This overhead is capped by RNIC
Fetch-and-Add throughput. As explained in §4, the switch
keeps track of RNIC progress, and it aggregates the counts lo-
cally until it finds that the RNIC can catch up. We also verify
that there is no end-to-end throughput degradation compared
with the baseline, a simple L2 switch.

All the primitives have zero CPU overhead.

6 Related Work
Accessing remote memory with RDMA: As RDMA en-
ables ultra low-latency remote memory access with mini-
mal CPU consumption, previous works have proposed var-
ious applications that utilize remote memory in a network.
These include key-value stores [12, 20, 27], distributed shared-
memory [12], transactional systems [10, 13, 21], and dis-
tributed NVM systems [24, 31]. While all these applications
adopt RDMA to let a server access remote memory on another
server, our work demonstrates a novel use of RDMA, which
allows network switches to leverage remote memory.
Applications on programmable switch data planes: With
recent advances in programmable switch data plane [3, 5],
studies have shown that various network functions such as
load balancers [26] and network telemetry [1, 29], and dis-
tributed applications such as key-value stores [18, 19] and
sequencers [22] can be implemented on a switch to improve
application performance and network efficiency. However,
such systems can have limited scalability due to scarce mem-
ory resource on the switch. Our primitives can potentially
benefit those applications by providing a memory hierarchy
with remote memory pool.
Lookup table updates via the control plane: Previous stud-
ies on software-defined networking have proposed ways of
updating flow-based rules to switches, either proactively or
reactively, via the control plane [25]. Some approaches [33]
attempt to scale the controller by distributing rules to multiple
authority switches. However, all these past approaches still
require control plane resources for moving the rules, mak-
ing them less applicable to data plane programs. We propose
more general remote memory access primitives. They can

be used for not only extending tables, but also packet buffer
and state-store, run purely in data plane and does not require
control plane involvement.

7 Discussion and Future Work
We conclude by highlighting a subset of open challenges and
future research directions.
Co-design of remote memory data structure and switch
data plane: The current design based on commodity switch
and RNICs can only support address-based memory access.
They do not natively support ternary or exact matching. Thus,
we design our prototypes using the most basic data structure
like FIFO queues and fixed-size array. It would be interest-
ing to co-design the data structure and switch data plane for
supporting ternary matching and other more complicated data
layouts in remote memory.
Further improving the telemetry system: We only show a
preliminary prototype – per-packet counting in remote mem-
ory – as an example telemetry system using the store-state
primitive. There is much room to improve. For example, to
reduce the bandwidth overhead of Fetch-and-Add packets, we
may further combine multiple counter updates into a single
operation, at the cost of some delay in updates. Also, design-
ing a general streaming packet trace analysis system with our
primitives is another interesting direction.
RDMA packet drops: The RDMA packets between the
switch and remote memory servers may get dropped due
to congestion or packet corruption. Such packet drops may
or may not affect the end-to-end performance and the ac-
curacy of primitive operations. For example, in the packet
buffer primitive case, an RDMA packet drop would lead to
dropping the original packet. Since Ethernet itself is best-
effort, applications and end-to-end protocol should tolerate
the packet drops. On the other hand, in the store-state primi-
tive, an RDMA packet drop would affect the accuracy of the
state on the remote store.

Future work has a few options to minimize the RDMA
packet drops. For example, one could enable PFC, just like
today’s RoCE deployment, to avoid congestion drops. Alter-
native, one may prioritize these RDMA packets so that they
are less likely to be dropped, and use a bandwidth cap to
prevent RDMA packets taking too much bandwidth. Finally,
on the switch side, one can implement parsing and handling
of RDMA ACKs/NACKs to make certain remote memory
reliable, e.g., in the remote counter case.
Other open problems: This paper aims to propose an ambi-
tious vision, thus leaving many possibilities and problems as
future work. These include: 1) to design a programming in-
terface for the primitives that general data-plane applications
can easily use; 2) to concretize the systems described in §2; 3)
to explore alternative system designs, e.g., for the switch table
extension, one may recirculate the original packet locally and
wait for the pulled entry, instead of depositing the original
packet. This can save the bandwidth overhead to the remote
memory; and 4) to improve the robustness of the architecture
by handling switch and server failures.

6

Acknowledgments
We would like to thank the anonymous HotNets reviewers
and our shepherd, Vincent Liu for their helpful comments.
This work was funded in part by NSF awards 1700521 and
1513764.

References
[1] 2018. Advanced Network Telemetry. https://www.barefootnetworks.

com/use-cases/ad-telemetry/.
[2] 2018. Barefoot Capilano. https://www.barefootnetworks.com/products/

brief-capilano/.
[3] 2018. Barefoot Tofino. https://www.barefootnetworks.com/products/

brief-tofino/.
[4] 2018. BCM88690–10 Tb/s StrataDNX Jericho2 Ethernet Switch

Series. https://www.broadcom.com/products/ethernet-connectivity/
switching/stratadnx/bcm88690.

[5] 2018. Cavium Xpliant Ethernet Switches. https://www.cavium.com/
xpliant-ethernet-switch-product-family.html.

[6] 2018. netpipe(1) - Linux man page. https://linux.die.net/man/1/netpipe.
[7] 2018. Perftest package. https://github.com/linux-rdma/perftest.
[8] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). In ACM SIGCOMM
(2010).

[9] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44,
3 (July 2014), 87–95.

[10] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
2016. Fast and General Distributed Transactions Using RDMA and
HTM. In EuroSys (2016).

[11] Graham Cormode and Marios Hadjieleftheriou. 2008. Finding Frequent
Items in Data Streams. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1530–
1541. https://doi.org/10.14778/1454159.1454225

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In USENIX NSDI
(2014).

[13] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,
Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Cas-
tro. 2015. No Compromises: Distributed Transactions with Consistency,
Availability, and Performance. In ACM SOSP (2015).

[14] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
USENIX NSDI (2018).

[15] IEEE. 2011. 802.1Qbb – Priority-based Flow Control. https://1.ieee802.
org/dcb/802-1qbb/.

[16] Infiniband Trace Association. 2010. Supplement to InfiniBand archi-
tecture specification volume 1 release 1.2.1 annex A16: RDMA over
converged ethernet (RoCE).

[17] Infiniband Trace Association. 2010. Supplement to InfiniBand archi-
tecture specification volume 1 release 1.2.1 annex A17: RDMA over
converged ethernet (RoCE).

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee,
Robert Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-
Free Sub-RTT Coordination. In USENIX NSDI (2018).

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In ACM SOSP (2017).

[20] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using
RDMA Efficiently for Key-value Services. In ACM SIGCOMM (2014).

[21] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson,
Vyas Sekar, and Srinivasan Seshan. 2018. Hyperloop: Group-based
NIC-offloading to Accelerate Replicated Transactions in Multi-tenant
Storage Systems. In ACM SIGCOMM (2018).

[22] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and
Dan R. K. Ports. 2016. Just Say No to Paxos Overhead: Replacing
Consensus with Network Ordering. In USENIX OSDI (2016).

[23] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In ACM SIGCOMM (2016).

[24] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus:
an RDMA-enabled Distributed Persistent Memory File System. In
USENIX ATC (2017).

[25] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: Enabling Innovation in Campus Networks. SIG-
COMM Comput. Commun. Rev. 38, 2 (March 2008), 69–74.

[26] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and
Cheap Using Switching ASICs. In ACM SIGCOMM (2017).

[27] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-
Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store.
In USENIX ATC (2013).

[28] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Has-
san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David
Wetherall, and David Zats. 2015. TIMELY: RTT-based Congestion
Control for the Datacenter. In ACM SIGCOMM (2015).

[29] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-Directed Hardware Design for
Network Performance Monitoring. In ACM SIGCOMM (2017).

[30] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
Keith Amidon, and Martin Casado. 2015. The Design and Implementa-
tion of Open vSwitch. In USENIX NSDI (2015).

[31] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed
Shared Persistent Memory. In ACM SoCC (2017).

[32] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. In ACM SIGCOMM (2015).

[33] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. 2010.
Scalable Flow-based Networking with DIFANE. In ACM SIGCOMM
(2010).

[34] Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan Katz-Bassett, Min-
lan Yu, and Jitendra Padhye. 2014. DIBS: Just-in-time Congestion
Mitigation for Data Centers. In ACM EuroSys (2014).

[35] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy.
2017. High-resolution Measurement of Data Center Microbursts. In
ACM IMC (2017).

[36] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. 2015. Congestion Control for
Large-Scale RDMA Deployments. In ACM SIGCOMM (2015).

7

https://www.barefootnetworks.com/use-cases/ad-telemetry/
https://www.barefootnetworks.com/use-cases/ad-telemetry/
https://www.barefootnetworks.com/products/brief-capilano/
https://www.barefootnetworks.com/products/brief-capilano/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88690
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88690
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://linux.die.net/man/1/netpipe
https://github.com/linux-rdma/perftest
https://doi.org/10.14778/1454159.1454225
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Mitigating Packet Losses
	2.2 Extending Lookup Tables
	2.3 Extending State Store for Telemetry
	2.4 Summary

	3 Overview
	4 Proof-of-Concept Design
	5 Preliminary Evaluation
	6 Related Work
	7 Discussion and Future Work
	Acknowledgments
	References

