
dPRO: A Generic Performance Diagnosis and Optimization Toolkit for
Expediting Distributed DNN Training

Hanpeng Hu 1 2 Chenyu Jiang 1 Yuchen Zhong 1 Yanghua Peng 2 Chuan Wu 1 Yibo Zhu 2 Haibin Lin 2

Chuanxiong Guo 2

ABSTRACT
Distributed training using multiple devices (e.g., GPUs) has been widely adopted for learning DNN models
over large datasets. However, the performance of large-scale distributed training tends to be far from linear
speed-up in practice. Given the complexity of distributed systems, it is challenging to identify the root cause(s) of
inefficiency and exercise effective performance optimizations when unexpected low training speed occurs. To date,
there exists no software tool which diagnoses performance issues and helps expedite distributed DNN training,
while the training can be run using different deep learning frameworks. This paper proposes dPRO, a toolkit
that includes: (1) an efficient profiler that collects runtime traces of distributed DNN training across multiple
frameworks, especially fine-grained communication traces, and constructs global data flow graphs including
detailed communication operations for accurate replay; (2) an optimizer that effectively identifies performance
bottlenecks and explores optimization strategies (from computation, communication, and memory aspects) for
training acceleration. We implement dPRO on multiple deep learning frameworks (TensorFlow, MXNet) and
representative communication schemes (AllReduce and Parameter Server). Extensive experiments show that
dPRO predicts the performance of distributed training in various settings with < 5% errors in most cases and finds
optimization strategies with up to 3.48× speed-up over the baselines.

1 INTRODUCTION

Distributed training on large datasets has been widely
adopted to learn modern machine learning (ML) models
such as deep neural networks (DNNs), to power various AI-
driven applications. As compared to single-node training,
distributed training using devices on multiple servers sub-
stantially alleviates the time cost (Huang et al., 2019; Lep-
ikhin et al., 2021), but often fails to scale well, i.e., far from
linear speed-up according to the number of devices in use,
even with state-of-the-art communication methods (Sergeev
& Del Balso, 2018; Jiang et al., 2020).

The causes of low distributed training efficiency are diverse:
stragglers (Chen et al., 2020), computation bottlenecks (Hu
et al., 2020; Ho et al., 2013), prolonged parameter syn-
chronization due to sub-optimal tensor granularity (Peng
et al., 2019), large idling time due to poor communication-
computation overlap (Narayanan et al., 2019), etc. Effec-
tively diagnosing performance bottlenecks and boosting
distributed training throughput have been critical for the

*Equal contribution 1Department of Computer Science, Univer-
sity of Hong Kong, Hong Kong, China 2ByteDance Inc., Beijing,
China. Correspondence to: Hanpeng Hu <hphu@cs.hku.hk>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

productivity of AI systems.

Diagnosing and improving distributed training efficiency
are challenging as: (i) causes of unexpected performance
are complex and it requires substantial time and efforts
from domain experts to manually inspect runtime traces in
order to figure out the real culprit; (ii) often, traces collected
from different ML frameworks (e.g., TensorFlow (Abadi
et al., 2016), PyTorch (Paszke et al., 2019)) are insufficient
for obtaining an exact global view of a distributed training
system, due to less accurate communication profiling; (iii)
various optimization strategies exist that can be applied to
tackle performance issues, incurring a large strategy space.

Optimization techniques for DNN training acceleration
can be divided into three categories: 1) Computation-
optimization strategies, such as operator fusion (Jia et al.,
2019b;a) and mixed precision training (Micikevicius et al.,
2018; nvi, 2020); 2) Communication-oriented techniques,
i.e., tensor fusion (hor, 2020), tensor partition (Peng et al.,
2019; Jiang et al., 2020), gradient compression (Alistarh
et al., 2017; Zheng et al., 2019), and transmission schedul-
ing to improve communication-computation overlap (Peng
et al., 2019; Cho et al., 2019); 3) Memory-optimization
methods, e.g., gradient accumulation and re-computation
(Chen et al., 2016). Even within a single optimization tech-
nique, multiple possible configurations can be applied, e.g.,

Jakub Konečný

Jakub Konečný

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

various combinations of fusing two or more operators (ops)
(Jia et al., 2019b;a). Besides, effects of different optimiza-
tions interact when applied together, while the combined
effects have not been clearly explored so far.

A common approach for training performance inspection
and improvement (Curtsinger & Berger, 2015; Ousterhout
et al., 2015) is to: (i) profile a training job during runtime,
collecting traces which record timestamps of specific tasks
and resource utilization; (ii) break down collected training
time into computation, communication, etc., and seek in-
sights from the summaries; (iii) apply a particular optimiza-
tion technique accordingly and tune its configurations based
on simulated performance or by experiments. However,
existing endeavors are limited in distributed DNN training
analysis, as follows:

. No global data flow graph (DFG) is readily available.
Though local DFG can be constructed based on each
worker’s trace, building a global DFG including all computa-
tion and communication ops, detailed inter-worker commu-
nication topology and op dependencies is non-trivial. Traces
independently collected from workers must be carefully
aligned in execution time, and cross-worker communication
topology, order and send-recv mapping have to be correctly
figured out from the disparate traces.

. No automatic and systematic analytical tool to identify
performance bottlenecks and evaluate proper optimizations.
Inefficiencies happen in different aspects when training dif-
ferent DNN models under various configurations, requiring
different optimization strategies. To date, the combined ef-
fects of different optimizations and related configurations
have not been carefully investigated.

This paper proposes dPRO, an automatic diagnosis and op-
timization system for distributed DNN training expedition.
We make the following contributions with dPRO.

• dPRO’s profiler automatically collects global traces and
constructs an accurate global DFG for distributed training
analysis. Computation/communication op dependencies are
carefully obtained, and fine-grained communication ops are
exploited to model each tensor transmission. To tackle clock
difference among different servers and inaccurate RECV
op timestamp, we carefully design a method to align trace
timestamps for distributed training, exploiting dependencies
between communication ops and time similarity of transmit-
ting tensors of the same size.

• dPRO’s optimization framework automatically discerns
performance bottlenecks and identifies suitable strategies
for uplifting training performance. We theoretically analyze
the interactions between optimization techniques, especially
op fusion and tensor fusion, and propose a new abstraction
of the global DFG, i.e., the Coarsened View, to reduce the
strategy search space. The algorithm framework further

exploits partial replay, the critical path and the symmetry of
the global DFG to accelerate strategy search.

• We build the dPRO toolkit and release it on GitHub 1.
dPRO can be easily enabled by setting an environment vari-
able, and its profiling incurs little overhead. We evaluate
dPRO on TensorFlow and MXNet, with PS or AllReduce
gradient synchronization, using RDMA or TCP transports
and show that dPRO accurately simulates distributed DNN
training with a < 5% average error (10× better than Day-
dream). Compared to representative baselines, dPRO effec-
tively explores good optimization strategies, increases the
training throughput by up to 3.48× and achieves the best
scalability. Finally, dPRO’s search acceleration techniques
can reduce the search time by orders of magnitude compared
to the baselines.

2 BACKGROUND AND MOTIVATION

2.1 DNN Training Profilers

1) Hardware profiling tools. NVIDIA provides NVProf
(NVIDIA, 2021d) to collect start/end time of each kernel,
GPU core and memory usage, as well as many other hard-
ware counters. NVIDIA CUPTI (NVIDIA, 2021a) enables
collecting profiling information at runtime. The vendor-
provided tools are hardware-dependent and do not capture
dependencies among ops in a DNN model, making it chal-
lenging to parse kernel-level traces.

2) Built-in profilers of ML frameworks. State-of-the-art
ML frameworks, such as TensorFlow (Abadi et al., 2016),
PyTorch (Paszke et al., 2019) and MXNet (Chen et al.,
2015), provide their own built-in profilers. These profil-
ers collect DNN op-level traces, including time and memory
consumption when executing each op. TensorFlow and
MXNet profilers also gather coarse-grained communication
traces for their distributed APIs, including start time and
end time of communication ops. We can not get the real
transmission time as the profiling does not exclude queuing
time in communication libraries.

3) Communication library profilers. Two parameter
synchronization (aka communication) schemes are widely
adopted for data-parallel training:(1) AllReduce (hor, 2020),
where all workers are connected in a tree or ring topology
(Patarasuk & Yuan, 2007), synchronously aggregate gradi-
ents using collective primitives and then update parameters
independently; (2) parameter server (PS) architecture (Jiang
et al., 2020), where workers PUSH the local gradients to
PSs and then PULL the aggregated gradients from the PSs.
Horovod (Foundation, 2019), a popular AllReduce commu-
nication library for DNN training, regards an entire NCCL
AllReduce task for a tensor as a single op and collects start

1https://github.com/joapolarbear/dpro

https://github.com/joapolarbear/dpro

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

time and duration for such AllReduce tasks on a single GPU
(called the ‘coordinator’ in Horovod). BytePS (ByteDance,
2020), a PS-based communication library that allows ten-
sor partition, profiles the time spent on the PUSH/PULL
operation of each tensor. Their profilers do not capture com-
putation traces. KungFu’s profiler (Mai et al., 2020) is able
to monitor gradient noise scale (GNS) by inserting a moni-
toring op to the DFG and uses a collective communication
layer to aggregate GNS across workers; however, it does
not track execution time of computation/communication ops
and the dependencies between them.

2.2 Challenges in Building Accurate Global Timeline

First, existing studies (e.g., Daydream (Zhu et al., 2020),
FlexFlow (Jia et al., 2019c)) predict training time of dis-
tributed DNN training jobs based on coarse-grained commu-
nication traces from the above existing profilers, estimating
communication time based on bandwidth and tensor size.
Such coarse-grained traces regard synchronization of one
tensor as a black box without differentiating queueing time
and transmission time, and are insufficient for accurately
predicting distributed runtime. Fig. 1 shows the per-iteration
time estimated using Daydream’s simulator and obtained
using testbed experiments by training ResNet50 (He et al.,
2016) under four different configurations (using Horovod or
BytePS for gradient synchronization over RDMA or TCP).
Daydream’s results remain similar across four cases, while
real execution time is vastly different (due to communication
protocol, topology and scale).

Next, existing profilers do not support timestamp alignment
among workers/PSs. The error of trace timestamps of dis-
tributed training jobs is incurred by two factors: 1) there
exist millisecond level or sub-millisecond level clock drifts
among workers/PSs even with clock synchronization tools,
such as NTP (Mills, 1991) or more precise tools (e.g., HUY-
GENS (Geng et al., 2018)), leading to some cross-worker
event dependency conflicts; 2) Profiling tools can only cap-
ture the launch time of a RECV op instead of the exact time
of receiving data. It is important to correct the start times-
tamps of RECV ops for faithful trace replay. Without trace
timestamp alignment, the error of communication times-
tamps will accumulate and increase the error of end-to-end
performance estimation.

We seek to design a generic distributed training profiler,
collecting both computation and fine-grained communica-
tion traces, and aligning traces timestamps from different
devices to provide an accurate global timeline of distributed
DNN training.

2.3 DNN Training Optimization

Computation Acceleration. Op fusion (ten, 2020; Jia
et al., 2019b;a) allows a compilation of multiple computa-

Horovod+RDMA
16 GPUs

Horovod+TCP
16 GPUs

BytePS+RDMA
16 GPUs

Horovod+RDMA
128 GPUs

0
60

120
180
240
300

Ite
ra

tio
n

Ti
m

e
(m

s)

0
10
20
30
40
50

Pr
ed

ict
io

n
Er

ro
r (

%
)

Ground Truth
Daydream

Prediction Error

Figure 1. Training ResNet50 in 100Gbps network, batch size 32
per GPU (see Sec. 7.1 for testbed details)

a b

A B

No fusion

fused_a_b

A B

OP fusion

Comp.

Comm.

(a)

BW.a BW.b

Comm.A Comm.B

w/o re-computation

BW.b

Comm.A Comm.B

Re-compute the output of FW.b

FW.b FW.a

FW.bBW.aFW.b FW.a

(b)

Figure 2. (a) Effect of op fusion: Comp. - computation op, Comm.
- gradient synchronization; A/B is the gradient produced by op a/b;
c is op fused from a and b. (b) Effect of re-computation: FW -
forward propagation; BW - backward propagation; re-computation
inserts a FW.b before BW.b since the output of the first FW.b is
not cached.

tion ops to one monolithic op, achieving reduced op schedul-
ing overhead and increased temporal and spatial locality of
intermediate data access. Mixed precision training (Mi-
cikevicius et al., 2018; nvi, 2020) advocates using 16-bit
floating-point instead of 32-bit as numerical formats of most
ops for less memory consumption and faster computation.

Communication optimization. Tensor fusion (hor, 2020)
fuses multiple small tensors to reduce communication over-
head in gradient synchronization. Tensor partitioning (Ja-
yarajan et al., 2019; Peng et al., 2019) slices a large tensor
into multiple pieces to better overlap push and pull in a PS
architecture. Gradient compression (Alistarh et al., 2017;
Bernstein et al., 2018) reduces gradient size with various
compression methods. A number of studies (Peng et al.,
2019; Bao et al., 2020; Zhang et al., 2017) have proposed al-
gorithms of tensor transmission scheduling to better overlap
computation and communication.

Memory optimization. Re-computation (Chen et al.,
2016) reduces memory footprint by deleting intermediate
results and re-computing them when necessary. Gradient ac-
cumulation accumulates gradients over consecutive training
iterations and reduces each iteration’s batch size to achieve
the same overall batch size.

Choosing appropriate optimizations for a particular dis-
tributed training job is challenging, due mainly to:

• Interactions/conflicts among different optimizations’ ef-
fects. For example, DL compilers such as XLA (TensorFlow,

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

ML
Frameworks

Communication
Frameworks

Profiler

Replayer

Optimization Pass Registry

Global Timeline
View

BytePS Horovod

Optimizer

① ②③

④

⑤

Scheduler
Target

* Iteration Time or
Memory Usage

Candidate
Selector

Global DFG Time Alignment

Operator
Fusion

Tensor Fusion

Re-
computation

Gradient
Accumulation

......Tensor
Partition

Figure 3. dPRO architecture.

2021) adopt op fusion to reduce GPU memory access and
may fuse all back-propagation ops (i.e., as with the XLA
auto-clustering algorithm), which delays communication
of tensors produced by these ops. As shown in Fig. 2(a),
although the computation time of the fused op becomes
shorter, end-to-end training time increases due to less over-
lapping between computation and communication. Memory
optimizations also interact with computation and communi-
cation. Fig. 2(b) shows that re-computation of intermediate
results sacrifices training speed to reduce memory footprint.
It may also delay tensor communication.

• Very large combined strategy space. The global DFG
in distributed training of a DNN model is large, making it
time-consuming to find the optimal set of strategies.

We design a search-based automatic optimizer framework,
that effectively explores trade-offs among multiple optimiza-
tions to identify proper strategies for training acceleration.

3 OVERVIEW

dPRO includes three modules, as shown in Fig. 3.

Profiler is a cross-framework distributed profiler, sup-
porting three representative ML frameworks (TensorFlow,
PyTorch and MXNet) and two parameter synchronization
schemes (AllReduce and PS). The profiler collects time
stamps (namely gTrace) of both computation ops and fine-
grained communication ops. It also tracks dependencies
among fine-grained communication ops and constructs the
global data flow graph (global DFG). Our profiler uses op-
level traces for computation ops, achieving similar high
simulation accuracy as in Daydream (which uses kernel-
level traces).

Replayer simulates distributed training of a DNN model
and estimates per-iteration training time of the global DFG.

Optimizer takes as input a given DNN model and resource
configurations (i.e., GPUs and their inter-connections), eval-
uates training performance of various strategy combinations
using the replayer, and produces the best set of strategies

Local DFGs

Communication
 Topology

Node 0

In Out

Node 1

In Out

Node 2

In Out

Virtual op: In Virtual op: Out Producer Consumer

...

Figure 4. An illustration of the global DFG.

found. We also provide an interface for developers to regis-
ter custom optimization strategies.

We detail our design of key modules in next sections.

4 PROFILER AND REPLAYER

4.1 Global DFG Construction

The profiler automatically constructs a global DFG of the
distributed training job, in which vertexes are computation
and fine-grained communication ops and edges denote their
dependencies. As shown in Fig. 4, the global DFG consists
of local data flow graphs and communication topologies.

Local DFGs. Most DL frameworks have the conception
of data flow graphs for individual workers (Abadi et al.,
2016; Paszke et al., 2019; Chen et al., 2015). Our profiler
extracts dependency information from each framework’s
built-in graph definition and constructs a data flow graph for
each worker accordingly. We further insert a pair of In/Out
virtual ops for each tensor into each local DFG, indicating
where the tensor transmission occurs.

Fine-grained Communication Topology describes how
each tensor is transferred between two devices, which con-
tains two types of vertices (communication ops): (1) pro-
ducer, which sends a tensor (partition) to another device; (2)
consumer, which receives a tensor (partition) from another
device. The profiler labels every transmission of a tensor
(partition) between two devices with a unique transaction
ID. A Middleman connects producers to the corresponding
consumers that share the same transaction IDs. The com-
munication topology for each tensor also contains a pair of
In/Out virtual ops labeled with the tensor name, indicating
the start/end of tensor transmission.

We connect local DFGs with the communication topology
through In/Out virtual ops, and the global DFG is hence
constructed. Decoupling global DFG construction into lo-
cal DFGs and communication topology, we enable dPRO
to support various ML frameworks and communication ar-
chitectures. In a PS architecture, each PUSH (PULL) is
regarded as a pair of SEND and RECV ops at a worker (PS)
and a PS (worker), respectively. The unique transaction ID
of each transmission can be produced using sender/receiver
IPs, tensor name and whether it is PUSH or PULL. For

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

AllReduce, we use a pair of SEND and RECV ops to repre-
sent the transmission of a chunk of the tensor to the next hop
(e.g., along the ring in ring AllReduce). The transaction ID
generation further uses chunk id of tensor partition and step
id as in ring AllReduce (Baidu, 2017).

4.2 Trace Time Alignment

To combine traces collected on disparate workers/PSs and
produce correct global DFG, one major obstacle is the time
shift among machines where workers run. Not relying on
accurate clock synchronization among machines, our pro-
filer corrects the start time of RECV ops and obtains a more
accurate communication duration of each tensor.

Let W and P denote the set of workers and PSs in a training
job, respectively. For AllReduce, P is empty. Let T̄ i

op[st]

and T̄ i
op[ed] be an op’s measured start and end timestamps

on node i ∈ P ∪W, and T i
op[st] and T i

op[st] represent the
respective adjusted time. Let node 0 be a reference for other
nodes to align their time to. We compute a time offset/drift
of node i, θi, as the difference in measured time between
node i and node 0, i.e., T 0

op = T̄ 0
op and T i

op = θi + T̄ i
op. We

leverage two observations for time alignment.

First, RECV ops on the same node receiving (even par-
titions of) the same tensor from the same sender in dif-
ferent training iterations, denoted as a RECV op family
frecv, should have similar execution time. Consider a
pair of SEND and RECV from node i to node j. Be-
cause RECV never happens before SEND, RECV’s true
start time, T j

recv[st] + θj , should be clipped by the start
time of SEND, T i

send[st] + θi, which changes the commu-
nication time from (T j

recv[ed] + θj) − (T j
recv[st] + θj) to

T j
recv[ed] + θj−max(T j

recv[st] + θj , T
i
send[st] + θi). With

time adjustment, we should minimize the variance of execu-
tion time of RECV ops in the same RECV op family:

O1 =
∑

frecv∈Frecv

V arrecvj∈frecv

(
T jrecv[ed]

+θj −max(T jrecv[st] + θj , T
i
send[st] + θi)

)
where Frecv is the set of all RECV op families and i denotes
the node where the sender of the tensor of frecv resides.

Second, nodes on the same physical machine should have
the same time offset because they share the same physical
clock. LetM be the set of all physical machines and gm be
the set of nodes on machine m. We should ensure the time
offset of workers on the same machine as close as possible:

O2 =
∑
m∈M

V ari∈gm(θi)

We compute time offsets θi’s for time alignment among
distributed nodes, by solving the following optimization:

min
θi:i∈P∪W

a1O1 + a2O2

s.t. θ0 = 0,

θi − θj ≤ T̄ jo2 − T̄
i
o1 ,

∀(i, j) ∈ (W ×P) ∪ (P×W), i 6= j, (o1, o2) ∈ E

Here a1 ≥ 0 and a2 ≥ 0 are two coefficients gauging the
weights of the two objectives, and E is the set of inter-op
dependencies. The constraints ensure inter-op dependencies
for time alignment, i.e., the adjusted time of an op o2 on j
(T̄ j

o2 + θj) that depends on op o1 on i, is not earlier than the
adjusted time of o1 (T̄ i

o1 + θi). The optimization problem
can be solved in a few seconds using the state-of-the-art
optimization libraries (CVXPY, 2020).

4.3 Replayer

The replayer simulates the execution of the global DFG
based on a modified Kahn’s algorithm (Kahn, 1962) of topo-
logical sorting. Instead of using a global ready queue (used
in Daydream or Kahn’s algorithm), for a distributed training
job, we regard each worker/PS and each communication
link as one device, and the replayer maintains a queue and
a device time (end time of the last op executed on the de-
vice) for each device. An op is enqueued to the queue of
corresponding device once it is ready, i.e., all its predecessor
ops are executed. The replayer iteratively picks the device
with the smallest device time, dequeues an op from the head
of this queue and updates the corresponding device time
with the op’s execution time. After all ops in the global
DFG are run, we take the largest device time as the iteration
time. Although there might be multiple feasible topological
sortings, dPRO’s replayer can generate the most likely one
by averaging op execution time over 10 training iterations
and imitating the FIFO queue in ML framework’s engines.

The replayer also produces an execution graph by adding
additional edges into the global DFG, indicating execution
ordering between ops running in the same device, and com-
putes the critical path on the execution graph, for bottleneck
identification by the optimizer.

5 OPTIMIZER

Given a global DFG G of a distributed DNN training job and
a set of optimization strategies S, the optimizer identifies
the bottlenecks in the global graph through training replay
and produces a subset of optimization strategies, S∗ ∈ S,
minimizing per-iteration training time (referred to as the
iteration time):

minS′∈S ITERATIONTIME(f(G,S ′))

where G′ = f(G,S ′) is the modified global DFG after
applying strategies in S ′ to the original global DFG G.

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

p1 p2 pi-1 pi pi+1 pi+2

qi qi+1qi-1 qi+2

......

q2q1

Critical Path

p1 p2 pi-1 pi pi+1 pi+2......

Worker 0

Worker 1

Figure 5. Illustration of Critical Path.

5.1 Theory Foundation

The main idea of our optimizer is to iteratively check
and optimize the critical path of the global execu-
tion graph. The critical path C contains a se-
quence of computation and communication ops: C =
[p0, p1, ..., pi, qi, qi+1, ..., q|C|−1], where p0, p1, ..., pi are
computation ops and qi, q1, ..., q|C|−1 are communication
ops. Here, we group fine-grained communication ops in the
global DFG for the transmission of tensor n (e.g., SEND
and RECV) as one communication op qn. Fig. 5 depicts an
example of the critical path and the correspondence between
each pair of pn/qn, n = 0, 1, ...|C| − 1. Since gradient ten-
sors are dependent on computation ops, the critical path
always starts from a sequence of computation ops and ends
with a sequence of communication ops.

Note that each computation op pn, n = 1, . . . , i on the criti-
cal path may correspond to a communication op qn (each
backward computation op has a corresponding tensor com-
munication op, while we treat qn for a forward computation
op pn as null); the corresponding communication ops do
not lie on the critical path before pi, because computation
ops are the bottleneck in this phase; On the other hand, each
communication op qn, n = i, . . . , |C| − 1 on the critical
path corresponds to a computation op pn which may not lie
on the critical path.

The optimizer inspects the critical path form p0 to q|C|−1.
For each op, pn, n = 1, . . . , i or qn, n = i, . . . , |C|−1, a de-
cision dn is made on whether op fusion and/or tensor fusion
should be applied: 1) dn = opfs, fusing two computation
ops pn−1 and pn; 2) dn = tsfs, fusing the two tensors qn−1
and qn (those corresponding to computation ops pn−1 and
pn); 3) dn = opfs tsfs, fusing pn−1 and pn and fusing
tensors qn−1 and qn; 4) dn = null, no fusion. We have
d0 = null. When tensor partition is enabled, the optimizer
also decides an optimal partition number kn for the tensor of
op pn or qn on the critical path. Unlike op and tensor fusion,
tensor partition does not hurt computation-communication
overlapping, but only affects tensor synchronization time,
which inspires us to adopt the optimal partition size for each
possible choice of dn, before comparing their performance.

Let Tn denote the duration from the start of the global
DFG execution till the completion of computation op
pn and corresponding communication op pn, i.e., Tn =
max(pen, q

e
n) (see Table 1 for notation definitions). The opti-

Table 1. Notation
Symbol Description Calculation
pdn execution time of computa-

tion op pn
profiled

pen end time of computation op
pn

decided during the
search process

qdn execution time of synchro-
nizing tensor qn

estimated using par-
tial replay

qsn size of tensor qn profiled
qen end time of communication

op qn
decided during the
search process

dn strategy taken on the n-th
op in the critical path

decided during the
search process

kn partition number of tensor
qn

computed during the
search process

mizer finds optimal decisions D = [d0, d1, ..., d|C|−1], and
K = [k0, k1, ..., k|C|−1] that minimize the duration of the
critical path: minD,K T|C|−1.

We analyze conditions for applying the optimization tech-
niques, deriving insights to tailor a strategy search algorithm.
Let opfs time(pn−1, pn) be the execution time of the fused
op after fusing pn−1 and pn.

Theorem 1 (Op Fusion) If qdn−1 ≤ pdn + pdn−1 −
opfs time(pn−1, pn), Tn achieved with this op fusion is
smaller than no fusion, i.e., Tn(dn = opfs) ≤ Tn(dn =
null) (fusing pn−1 and pn is better than not); otherwise,
Tn(dn = opfs) ≥ Tn(dn = null), i.e., fusing pn−1 and
pn leads to a worse performance.

Let tsync(s, k) be the time to synchronize a tensor of size s,
divided to k partitions, i.e., execution time of the complete
synchronization operation on this tensor (using either PS or
AllReduce). Given a tensor of size s, we use k∗[s] to denote
the optimal partition number that minimizes tsync.

Theorem 2 (Tensor Fusion/Partition) If qen−1 > pen +
tsync(q

s
n−1 + qsn, k

∗[qsn−1 + qsn])− tsync(qsn, k∗[qsn]), then
Tn achieved by fusing tensors qn−1 and qn is smaller than
no fusion, i.e., Tn(dn = tsfs, kn = k∗[qsn−1 + qsn]) <
Tn(dn = null, kn = k∗[qsn]) (fusing qn−1 and qn is better
than not); otherwise, qn−1 and qn should not be fused.

When considering op fusion and tensor fusion/partition to-
gether, if fusing two computation (communication) ops is
better than not, their corresponding communication (com-
putation) ops - if there are - should also be fused, without
sacrificing computation-communication overlapping.

Theorem 3 (Op Fusion and Tensor Fusion/Partition)
Tn(dn = opfs tsfs, kn = k∗[qsn−1 + qsn]) ≤ Tn(dn =
tsfs, kn = k∗[qsn−1 + qsn]) and Tn(dn = opfs tsfs, kn =
k∗[qsn−1 + qsn]) ≤ Tn(dn = opfs, k∗n[qsn]).

See the appendix (hu2, 2022) for proofs of Theorems 1, 2
and 3.

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

p1 p2

q2

p3

q3 q4

p1 p2

q1+q2

p3+p4

q3 q4Group

Figure 6. Illustration of Coarsened View, where p1 has no learnable
parameter but p3 has two.

5.2 Diagnosis and Optimization Algorithm

An ablation of dPRO’s optimizer module is given in Fig. 3.
The optimizer maintains a Graph Pass Registry including
various optimization techniques. Each Graph Pass in the
Registry corresponds to an optimization technique, such as
op fusion, tensor fusion, tensor partition, etc.

The optimizer analyzes the bottlenecks in the global DFG
and optimizes them in an iterative manner. The optimizer
algorithm is given in Alg. 1. At the beginning, the optimizer
evaluates the iteration time and memory usage of the origi-
nal global DFG G by replaying it with the replayer. If the
memory usage exceeds the memory budget (specified by
the user), the memory-optimization passes are invoked to
reduce the memory footprint (see the appendix (hu2, 2022)
for details).

Then the optimizer proceeds with throughput optimiza-
tion, that minimizes the makespan of the critical path in
the global execution graph. Given a critical path C =
[p0, p1, ..., pi, qi, qi+1, ..., q|C|−1], the optimizer first exam-
ines the computation ops pn, n = 1, . . . , i in order. Be-
cause the performance of this segment of the critical path
is computation-bound, the optimizer first evaluates whether
op fusion should be applied on pn−1 and pn according to
Theorem 1. If so, it invokes the op fusion pass to fuse
pn−1 and pn, as well as the tensor fusion pass to fuse the
corresponding two tensors qn−1 and qn (Theorem 3). An
optimal partition number k∗ is then computed and applied
(if k∗ > 1) on the fused or non-fused tensor qn.

Next, the optimizer inspects the communication ops qn, n =
i, . . . , |C| − 1, on the critical path. In this segment, the
performance is communication-bound. The optimizer first
computes the optimal partition number k∗ on the fused
and non-fused tensor qn and checks whether tensor fusion
should be applied to qn−1 and qn according to Theorem 2. If
so, the optimizer invokes the tensor fusion pass to fuses qn−1
and qn, as well as the corresponding computation ops pn−1
and pn (Theorem 3). Then the optimal partition number k∗

on fused or non-fused tensor is applied accordingly.

After applying the optimizations, the global DFG G is up-
dated. The optimizer uses the replayer to update the critical
path C and then repeats the search on the new critical path.

The fused op execution time, opfs time(pn−1, pn), can be
obtained by profiling the fused op in an offline manner (as

Algorithm 1 Diagnosis and Optimization Algorithm
1: If OOM, invoke the Memory Optimization Pass
2: Construct the Coarsened View and fuse ops/tensors in the

same group.
3: The replayer computes an initial critical path C =

[p0, p1, ..., pi, qi, qi+1, ..., q|C|−1]
4: while search time budget not exhausted and speed-up not

converged do
5: for n = 0→ i do
6: if qdn−1 < pdn + pdn−1 − opfs time(pn−1, pn) then
7: OPFUSION(pn−1, pn) [Theorem 1]
8: TENSORFUSION(qn−1 , qn) [Theorem 3]
9: k∗ ← OPTPARTNUM(qn−1 + qn)

10: Partition fused tensor qsn−1 + qsn evenly by k∗

11: else
12: // tensor partition only
13: k∗ ← OPTPARTNUM(qn)
14: Partition tensor qsn evenly by k∗

15: end if
16: end for
17: for n = i→ |C| − 1 do
18: if qen−1 > pen + tsync(q

s
n−1 + qsn, k

∗[qsn−1 + qsn]) −
tsync(q

s
n, k
∗[qsn]) then

19: TENSORFUSION(qn−1, qn) [Theorem 2]
20: OPFUSION(pn−1 , pn) [Theorem 3]
21: Partition fused tensor qn−1 + qn evenly by k∗ =

OPTPARTNUM(qn−1 + qn)
22: else
23: Partition tensor qsn evenly by k∗ =

OPTPARTNUM(qn)
24: end if
25: end for
26: Execute the updated global DFG using the re-

player and obtain a new critical path C =
[p0, p1, ..., pi, qi, qi+1, ..., q|C|−1]

27: end while

we will do in the experiments) or use a cost model (Kaufman
et al., 2019). The time to synchronize a tensor, tsync(s, k),
is estimated with partial replay of the subgraph including
all relevant communication ops (Sec. 5.3). The optimal
partition number of a tensor is obtained through grid search.

5.3 Search Speed-up

It is time-consuming to exhaustively explore the large strat-
egy space, e.g., it takes more than 24 hours to search for the
optimal optimization strategies for BERT Base. We propose
several techniques to expedite the search process.

Coarsened View. Inspired by Theorem 3, we coarsen the
global DFG during the search process, namely constructing
the Coarsened View: we put computation ops that do not
produce tensors but are close to one tensor-producing com-
putation op into one group (together with the latter), and
communication ops connected to the same computation op
into one group. Ops or tensors in the same group are fused,
and we search for optimization strategies based on such a
coarsened view of the global DFG (line 1 of Alg. 1). Fig. 6

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

gives an illustration. p1 produces no tensor (q1 = null) and
is connected to p2 which generates a tensor q2; p1 and p2 are
fused into one group. The rationale lies in that: we can view
tensor q2 as a fusion of q1 = null and q2; then according to
Theorem 3, fusing p1 and p2 leads to a better performance.
q3 and q4 are both tensors produced by p3 (e.g., the Batch-
Norm Layer has two learnable parameters (Ioffe & Szegedy,
2015)), and they are put into one group. This is because
we can regard p3 as a fusion of p3 and p4 = null; then
fusing q3 and q4 is better than not based on Theorem 3. We
construct Coarsened View using a backtracking algorithm
detailed in the appendix (hu2, 2022).

Partial Replay. To avoid frequently replaying the en-
tire global DFG during strategy search (for estimating
tsync(s, k)), the replayer supports partial simulation. Given
the current global DFG G, the replayer identifies all com-
munication ops Sp related to the tensor, and generates a
subgraph G′, which contains the ops in Sp and the edges
between those ops. Execution of the subgraph is simulated
to produce the tensor synchronization time.

Exploiting Symmetry. We further leverage the symmetry
in the global DFG of state-of-the-art DNNs to accelerate
strategy search. For example, BERT (Devlin et al., 2019)
includes multiple transformer blocks; the strategies applied
inside one block can be used in other blocks as well. For data
parallel training with homogeneous workers, the optimiza-
tions applied on one critical path can actually be applied to
multiple workers.

6 IMPLEMENTATION

Profiler. To profile computation ops, we use the native
profiler of each ML framework with minor modifications.

• TensorFlow. We implemented dPRO with TensorFlow
2.4 in the graph execution mode. We modify tf.profiler to
collect computation traces with absolute time and extract
dependencies from tf.RunMetadata.partition graphs.

• MXNet. We collect computation traces using
mxnet.profiler, with some modifications to ensure a
unique trace name for each op. We extract op dependencies
through mxnet.Symbol.debug str() API.

• Communication. We use Horovod (Sergeev & Del Balso,
2018) as the AllReduce communication library, which uses
NCCL (NVIDIA, 2021c) for collective communication
across GPUs. We dive into NCCL (adding 318 LoCs) to
collect timestamps of SEND/RECV of the tensor chunks.
We adopt BytePS (Jiang et al., 2020) for PS-based commu-
nication and add around 400 LoCs to its communication
library, ps-lite (Li et al., 2014), for recording timestamps of
PUSH and PULL of each tensor.

Replayer. We implement it using Python with 3653 LoCs.

Optimizer. We implement the optimizer and all optimiza-
tion passes in Python with 5745 LoCs. We implement op
fusion on TensorFlow using XLA (TensorFlow, 2021), and
modify it to allow manual control of which ops to be fused
in detail, in order to apply our identified strategies. We
modify Horovod and BytePS to enable customized tensor
fusion pattern and tensor partition size.

APIs and Commands. dPRO provides a simple program-
ming interface for trace collection. The following shows the
APIs for trace collection on TensorFlow, with only 2 addi-
tional LoCs: a recorder is defined, with which the wrapper
decides when to start/finish profiling and output traces.
recorder = dpro.Recorder(model)
@dpro.profile(recorder)
def train_one_step():

define one training step here

After profiling, a user can call the commands as follows to
invoke the profiler, replayer and optimizer, respectively.
$ dpro profile <python program> -o <trace

path>
$ dpro replay <trace path>
$ dpro optimize <trace path>

7 EVALUATION

7.1 Experiment Setup

Testbed. We evaluate dPRO in a production ML cluster
and use up to 128 Tesla V100 32GB GPUs (on 16 servers).
The GPU servers are equipped with NVLinks and inter-
connected with 100Gbps bandwidth using Mellanox CX-5
single-port NICs. We use CUDA v10.2 (NVIDIA, 2020)
and cuDNN v7.6.5 (NVIDIA, 2021b) in our experiments.
In our default, we use 16 GPUs (on 2 servers).

Benchmarks. We train 4 DNN models: BERT Base (De-
vlin et al., 2019) for natural language processing, and
ResNet50 (He et al., 2016), VGG16 (Simonyan & Zis-
serman, 2015) and InceptionV3 (Szegedy et al., 2016)
for image classification. Each model is trained using
various combinations of ML framework, communication
library and inter-server connectivity: Horovod Tensor-
Flow (HVD+TF), BytePS TensorFlow (BPS+TF), Horovod
MXNet (HVD+MX), BytePS MXNet (BPS+MX), each
with TCP or RDMA inter-connectivity.

Baselines. We compare dPRO with the state of the art in var-
ious aspects: 1) Daydream for replay accuracy: Daydream
(Zhu et al., 2020) estimates the iteration time of distributed
training using a local DFG and inserts one coarse-grained
communication op for each tensor, whose communication
time is calculated by tensor size/bandwidth. 2) XLA’s
default op fusion, which fuses as many computation ops
as possible. 3) Horovod’s default tensor fusion, which
fuses tensors in intervals of 5ms with fused tensor size

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

Ground Truth dPRO Daydream dPRO Prediction Error

HVD+TF HVD+MX BPS+TF0

50

100

150

200

Ite
ra

tio
n

Ti
m

e
(m

s)

0

5

10

15

20

dP
R

O
 E

rr
or

 (%
)

(a) ResNet50, TCP

HVD+TF HVD+MX BPS+TF0

50

100

150

200

Ite
ra

tio
n

Ti
m

e
(m

s)

0

5

10

15

20

dP
R

O
 E

rr
or

 (%
)

(b) ResNet50, RDMA

HVD+TF HVD+MX BPS+TF0

125

250

375

500

Ite
ra

tio
n

Ti
m

e
(m

s)

0

5

10

15

20

dP
R

O
 E

rr
or

 (%
)

(c) VGG16, TCP

HVD+TF HVD+MX BPS+TF0

75

150

225

300

Ite
ra

tio
n

Ti
m

e
(m

s)

0

5

10

15

20

dP
R

O
 E

rr
or

 (%
)

(d) VGG16, RDMA

HVD+TF HVD+MX BPS+TF0

50

100

150

200

Ite
ra

tio
n

Ti
m

e
(m

s)

0

5

10

15

20
dP

R
O

 E
rr

or
 (%

)

(e) InceptionV3, TCP

HVD+TF HVD+MX BPS+TF0

50

100

150

200

Ite
ra

tio
n

Ti
m

e
(m

s)

0

5

10

15

20

dP
R

O
 E

rr
or

 (%
)

(f) InceptionV3, RDMA

HVD+TF HVD+MX BPS+TF0

150

300

450

600

Ite
ra

tio
n

Ti
m

e
(m

s)

0

5

10

15

20

dP
R

O
 E

rr
or

 (%
)

(g) BERT Base, TCP

HVD+TF HVD+MX BPS+TF0

150

300

450

600

Ite
ra

tio
n

Ti
m

e
(m

s)

0

5

10

15

20

dP
R

O
 E

rr
or

 (%
)

(h) BERT Base, RDMA
Figure 7. Replay Accuracy: dPRO replayer vs. Daydream simulator

Table 2. Deep Dive of Simulation Error Comparison for Tensor-
Flow Horovod RDMA

Model Experiment Time (ms)
Iteration FW BW

ResNet50
Ground truth 138.64 34.78 71.34

dPRO 142.31 34.20 70.32
Daydream 109.19 34.69 70.04

BERT Base
Ground truth 459.62 107.49 185.66

dPRO 453.83 106.58 187.05
Daydream 345.68 106.80 185.79

upper-bounded by 64MB, as well as 4) Horovod Autotune,
which automatically tunes the interval and upper bound. 5)
BytePS’s default setting, in which tensors are partitioned
with a partition size of 4MB.

By default, the batch size is 32 per GPU. Iteration time is
averaged over 10 training steps after the warm-up phase.
More experimental results can be found in the appendix
(hu2, 2022).

7.2 Replay Accuracy

Fig. 7 compares the predicted iteration time by dPRO and
Daydream’s simulator against the real time measured in
actual training. dPRO’s replay error is less than 5% in most
cases, while Daydream’s error rate is up to 70.2%.

Table 2 shows detailed estimated durations of forward and
backward propagation. We observe that both dPRO and
Daydream predict forward and backward execution time
accurately, so the error mainly arises from the estimation
of communication time. Daydream’s simple approach for
communication time prediction does not capture effects of
message queuing, network and communication protocols,
resulting in larger errors in training simulation.

We also note that the overhead introduced by dPRO (5.86%
in our experiments) is almost the same as that of ML frame-
works’ built-in profilers, indicating that our detailed com-

8 16 32 64 128
of GPUs

0

10

20

30

40

Pr
ed

ict
io

n
Er

ro
r (

%
)

dPRO
w/o Time Alignment

(a) VGG16, HVD RDMA

8 16 32 64 128
of GPUs

0
10
20
30
40
50

Pr
ed

ict
io

n
Er

ro
r (

%
)

dPRO
w/o Time Alignment

(b) BERT Base, HVD RDMA

Figure 8. Effects of trace timeline alignment. Workers in the 8-
GPU jobs are located on the same physical machine.

munication profiling introduces little extra overhead.

7.3 Trace Time Alignment

To evaluate the effect of our trace time alignment, we col-
lect traces by running distributed training jobs on different
clusters, where NTP is enabled. Fig. 8 shows errors of itera-
tion time estimated by our replayer (as compared to ground
truth) with and without time alignment. Although workers
have been synchronized with NTP or with no clock drift
(as in the 8-GPU jobs), inaccuracy of communication traces
(e.g., due to RECV op) still leads to large replay errors (up
to 36.7%), while errors are reduced to < 5% with time
alignment. Since larger clusters are more likely to experi-
ence large clock drifts and queuing delay, the simulation
error gap between dPRO w/ and w/o trace time alignment
becomes significantly larger as the cluster size grows.

7.4 Optimizer Performance

Computation op fusion. We first evaluate the performance
of op fusion strategies found by the optimizer, temporarily
excluding other optimization techniques from the search
space. Fig. 9 shows the actual training throughput when
applying the respective strategies in real distributed training.
dPRO’s op fusion (dPRO OPFS) yields up to 51.843%
speed-up as compared to XLA’s default strategies. Although

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

HVD BPS HVD BPS HVD BPS HVD BPS
0.0

0.3

0.6

0.9

1.2

1.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

ResNet50 InceptionV3 BERT Base VGG16

Default BytePS/Horovod
XLA

dPRO_OPFS
dPRO_TSFS

dPRO_OPFS_TSFS
Horovod Autotune

Figure 9. Performance of op fusion and tensor fusion: training
different DNNs on TensorFlow

Table 3. Memory estimation accuracy

Model Real (GB) Est. (GB) Relative Error (%)
BERT Base 9.96 10.25 2.83
ResNet50 5.41 5.71 5.25
InceptionV3 3.91 4.05 3.46
VGG16 5.91 5.83 1.37

XLA is widely used to accelerate training on a single ma-
chine, the results show that in distributed training, simply
fusing many ops as with XLA may even slow down the
training progress, due mainly to reduced overlap between
computation and communication.

Tensor Fusion and Tensor Partition. We next evaluate
the effect of tensor fusion strategies found by dPRO’s op-
timizer (dPRO TSFS). Note that both tensor fusion and
tensor partition (BytePS’s default partition strategy) are en-
abled when we use BytePS as the communication library. As
Fig. 9 shows, our strategies achieve up to 19.1% speed-up
compared with default Horovod and BytePS.

Interaction between op fusion and tensor fusion. We
further evaluate combined op fusion and tensor fu-
sion/partition strategies identified by our optimizer
(dPRO OPFS TSFS). In Fig. 9, We observe that our
combined strategies perform the best in most cases: up to
62.95% acceleration as compared to XLA and up to 26.44%
speed-up compared to default Horovod and BytePS.

Integrating memory optimization. In this experiment,
we evaluate the accuracy of peak memory estimation with
our replayer. Table 3 shows the actual memory consumption
and estimated peak memory with our replayer, when training
different DNN models on TensorFlow with a batch size of
32 per GPU. The relative errors across different models are
at most 5.25%.

We further investigate the effects of memory optimization
(gradient accumulation and re-computation to reduce mem-
ory footprint) performed at the start of our search algorithm.
Especially, the algorithm evaluates iteration time and mem-
ory incurred by the two memory optimizations and selects
the one achieving the shorter time under the memory bud-
get. Table 4 presents the results when training BERT Base

Table 4. Iteration time and memory usage: BERT Base (Tensor-
Flow Horovod RDMA) on 16 GPUs with batch size 64 per GPU.

Optimization Method Time (ms) Memory (GB)
Real Est. Real Est.

w/o optimization 622.12 613.87 16.42 16.97
Re-computation 696.13 672.60 7.43 7.20
Gradient Accumulation 714.22 708.57 9.96 10.25

Table 5. Time to search optimal op fusion and tensor fusion/parti-
tion strategies on TensorFlow BytePS (in hours).

Model Straw-
man

+Coarsened
View

+Partial
Replay

+Sym-
metry

ResNet50 14.60 5.35 0.91 0.29
VGG16 11.97 3.74 0.71 0.04
InceptionV3 16.75 6.13 1.04 0.47
BERT Base >24 22.01 3.25 0.49

TCP RDMA TCP RDMA TCP RDMA0

180

360

540

720

Ite
ra

tio
n

Ti
m

e
(m

s)
ResNet50 VGG16 InceptionV3

0

5

10

15

20

dP
RO

 E
rro

r (
%

)Ground Truth dPRO Daydream dPRO Prediction Error

(a) Replay Accuracy Comparison
Horovod Horovod Autotune XLA dPRO

16 32 64 128
of GPUs

0
20
40
60
80

100

Th
ro

ug
hp

ut
 p

er
 G

PU
(s

am
pl

es
/s

ec
)

(b) VGG16

16 32 64 128
of GPUs

0

20

40

60

80

Th
ro

ug
hp

ut
 p

er
 G

PU
(s

am
pl

es
/s

ec
)

(c) BERT Base

Figure 10. Performance when training DNN models using up to
128 V100 GPUs on TensorFlow + Horovod

using a batch size of 64 per GPU, on 16GB V100 GPUs
(an OOM error occurs without memory optimization). Re-
computation performs better than gradient accumulation in
both time and memory consumption in this setting. More-
over, prediction results with our replayer match well the
measured data collected in actual training.

Search speedup. We evaluate the effects of our techniques
used to accelerate the strategy search process. Table 5 gives
the algorithm running time, where the search ends when
the per-iteration training time evaluated with the identified
strategies changes little over 5 search iterations. The straw-
man case is Alg. 1 without any search speed-up methods,
which costs tens of hours. The last three columns show the
search time when the respective speed-up method is in place
(in addition to the previous one(s)). With more speed-up
methods applied, the strategy search time decreases signifi-
cantly and we can finish the search within a short time. Note
that all experimental results we presented earlier are based
on strategies found with the speeded-up search.

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

7.5 Large-Scale Distributed Training

We further evaluate dPRO on replaying and optimizing dis-
tributed DNN training using large-scale clusters. In Fig. 10,
we observe the following: (1) as the cluster size grows,
DNN training becomes slower since the communication
overhead is larger for synchronizing among more GPUs.
(2) Our replayer can still simulate such distributed training
accurately, with an error lower than 5% in most cases (up to
5.6%); Daydream’s prediction error increases substantially
(up to 73.8%) as the cluster size grows. (3) dPRO’s com-
bined strategies reach the best scalability and yield up to
3.48× speed-up compared to XLA’s default strategies.

8 CONCLUSION

dPRO is a diagnosis and optimizing toolkit for distributed
DNN training. It can simulate distributed training with
low error under different configurations and efficiently ex-
plore collaborative effects among multiple DNN optimiza-
tions. The key design points include: 1) building an ac-
curate global DFG by collecting fine-grained traces and
aligning timestamps in different devices; 2) designing an op-
timization framework to search for combined optimization
strategies efficiently.

dPRO, along with the time alignment method, can also be
applied to model or pipeline-parallel training, where each
local DFG only contains part of ops in the DNN model
and the communication topology models transmission of
activations between workers. We also provide an interface
for developers to register custom optimization strategies
(e.g., mixed precision), and the optimizer can automatically
explore all registered optimizations (see the appendix (hu2,
2022) for more details).

9 ACKNOWLEDGEMENT

This work was supported by Hong Kong Innovation and
Technology Commission’s Innovation and Technology Fund
(Partnership Research Programme with ByteDance Limited,
Award No. PRP/082/20FX), and grants from Hong Kong
RGC under the contracts HKU 17204619, 17208920 and
17207621.

REFERENCES

Horovod Tensor Fusion, 2020. https://
horovod.readthedocs.io/en/stable/
tensor-fusion_include.html.

Training With Mixed Precision, 2020. https://docs.
nvidia.com/deeplearning/performance/
mixed-precision-training/index.html.

TensorFlow Operation Fusion, 2020. https:

//www.tensorflow.org/lite/convert/
operation_fusion.

dPRO FigShare Software, 2022. https://doi.org/
10.6084/m9.figshare.19165622.v3.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A System for Large-scale Machine Learn-
ing. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, 2016.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. QSGD: Communication-Efficient SGD via Gradient
Quantization and Encoding. In Proceedings of Advances
in Neural Information Processing Systems, 2017.

Baidu. Ring AllReduce, 2017. https://github.com/
baidu-research/baidu-allreduce.

Bao, Y., Peng, Y., Chen, Y., and Wu, C. Preemptive All-
reduce Scheduling for Expediting Distributed DNN Train-
ing. In Proceedings of IEEE International Conference on
Computer Communications, 2020.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. SignSGD: Compressed Optimisation for Non-
Convex Problems. In Proceedings of International Con-
ference on Machine Learning, 2018.

ByteDance. BytePS Timeline, 2020. https:
//github.com/bytedance/byteps/blob/
master/docs/timeline.md.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M.,
Xiao, T., Xu, B., Zhang, C., and Zhang, Z. MXNet:
A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. arXiv preprint
arXiv:1512.01274, 2015.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
Deep Nets with Sublinear Memory Cost. arXiv preprint
arXiv:1604.06174, 2016.

Chen, Y., Peng, Y., Bao, Y., Wu, C., Zhu, Y., and Guo,
C. Elastic Parameter Server Load Distribution in Deep
Learning Clusters. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, 2020.

Cho, M., Finkler, U., Serrano, M., Kung, D., and Hunter,
H. BlueConnect: Decomposing All-reduce for Deep
Learning on Heterogeneous Network Hierarchy. IBM
Journal of Research and Development, 2019.

Curtsinger, C. and Berger, E. D. Coz: Finding Code that
Counts with Causal Profiling. In Proceedings of the 25th
Symposium on Operating Systems Principles, 2015.

https://horovod.readthedocs.io/en/stable/tensor-fusion_include.html
https://horovod.readthedocs.io/en/stable/tensor-fusion_include.html
https://horovod.readthedocs.io/en/stable/tensor-fusion_include.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://www.tensorflow.org/lite/convert/operation_fusion
https://www.tensorflow.org/lite/convert/operation_fusion
https://www.tensorflow.org/lite/convert/operation_fusion
https://doi.org/10.6084/m9.figshare.19165622.v3
https://doi.org/10.6084/m9.figshare.19165622.v3
https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
https://github.com/bytedance/byteps/blob/master/docs/timeline.md
https://github.com/bytedance/byteps/blob/master/docs/timeline.md
https://github.com/bytedance/byteps/blob/master/docs/timeline.md

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

CVXPY. CVXPY, 2020. https://www.cvxpy.org/
tutorial/advanced/index.html.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, 2019.

Foundation, L. A. . D. Horovod, Analyze Perfor-
mance, 2019. https://horovod.readthedocs.
io/en/stable/timeline_include.html.

Geng, Y., Liu, S., Yin, Z., Naik, A., Prabhakar, B., Rosen-
blum, M., and Vahdat, A. Exploiting a natural network
effect for scalable, fine-grained clock synchronization. In
Proceedings of 15th USENIX Symposium on Networked
Systems Design and Implementation, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition,
2016.

Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons,
P. B., Gibson, G. A., Ganger, G., and Xing, E. P. More
Effective Distributed ML via a Stale Synchronous Parallel
Parameter Server. Proceedings of Advances in Neural
Information Processing Systems, 2013.

Hu, H., Wang, D., and Wu, C. Distributed Machine Learning
through Heterogeneous Edge Systems. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2020.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe: Ef-
ficient Training of Giant Neural Networks using Pipeline
Parallelism. In Proceedings of Advances in Neural Infor-
mation Processing Systems, 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proceedings of International Conference on Machine
Learning, 2015.

Jayarajan, A., Wei, J., Gibson, G., Fedorova, A., and Pekhi-
menko, G. Priority-based Parameter Propagation for
Distributed DNN Training. In Proceedings of Machine
Learning and Systems, 2019.

Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia,
M., and Aiken, A. TASO: Optimizing Deep Learning
Computation with Automatic Generation of Graph Sub-
stitutions. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019a.

Jia, Z., Thomas, J., Warszawski, T., Gao, M., Zaharia, M.,
and Aiken, A. Optimizing DNN Computation with Re-
laxed Graph Substitutions. In Proceedings of Machine
Learning and Systems, 2019b.

Jia, Z., Zaharia, M., and Aiken, A. Beyond Data and Model
Parallelism for Deep Neural Networks. In Proceedings
of Machine Learning and Systems, 2019c.

Jiang, Y., Zhu, Y., Lan, C., Yi, B., Cui, Y., and Guo, C. A
Unified Architecture for Accelerating Distributed DNN
Training in Heterogeneous GPU/CPU Clusters. In Pro-
ceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation, 2020.

Kahn, A. B. Topological Sorting of Large Networks. Com-
munications of the ACM, 1962.

Kaufman, S., Phothilimtha, P., and Burrows, M. Learned
TPU Cost Model for XLA Tensor Programs. In Proceed-
ings of the Workshop on ML for Systems at NeurIPS 2019,
2019.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. GShard: Scaling
Giant Models with Conditional Computation and Auto-
matic Sharding. In Proceedings of International Confer-
ence on Learning Representations, 2021.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling Distributed Machine Learning with the Parameter
Server. In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation, 2014.

Mai, L., Li, G., Wagenländer, M., Fertakis, K., Brabete,
A.-O., and Pietzuch, P. Kungfu: Making training in
distributed machine learning adaptive. In Proceedings
of the 14th USENIX Symposium on Operating Systems
Design and Implementation), 2020.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed Precision Training.
In Proceedings of International Conference on Learning
Representations, 2018.

Mills, D. L. Internet Time Synchronization: the Network
Time Protocol. IEEE Transactions on Communications,
1991.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. PipeDream: Generalized Pipeline Parallelism
for DNN Training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019.

https://www.cvxpy.org/tutorial/advanced/index.html
https://www.cvxpy.org/tutorial/advanced/index.html
https://horovod.readthedocs.io/en/stable/timeline_include.html
https://horovod.readthedocs.io/en/stable/timeline_include.html

dPRO: A Generic Profiling and Optimization System for Expediting Distributed DNN Training

NVIDIA. CUDA Toolkit Release Notes, 2020.
https://docs.nvidia.com/cuda/archive/
10.2/cuda-toolkit-release-notes/
index.html.

NVIDIA. CUPTI, 2021a. https://docs.nvidia.
com/cuda/cupti/.

NVIDIA. cuDNN Documentation, 2021b. https:
//docs.nvidia.com/deeplearning/cudnn/
developer-guide/index.html.

NVIDIA. NCCL, 2021c. https://developer.
nvidia.com/nccl.

NVIDIA. NVProf, 2021d. https://docs.nvidia.
com/cuda/profiler-users-guide/index.
html.

Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., and
Chun, B.-G. Making Sense of Performance in Data An-
alytics Frameworks. In Proceedings of 12th USENIX
Symposium on Networked Systems Design and Implemen-
tation, 2015.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. PyTorch: An Imperative Style, High-
performance Deep Learning Library. In Proceedings
of Advances in Neural Information Processing Systems,
2019.

Patarasuk, P. and Yuan, X. Bandwidth Efficient All-reduce
Operation on Tree Topologies. In Proceedings of the
IEEE International Parallel and Distributed Processing
Symposium, 2007.

Peng, Y., Zhu, Y., Chen, Y., Bao, Y., Yi, B., Lan, C., Wu,
C., and Guo, C. A Generic Communication Scheduler
for Distributed DNN Training Acceleration. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, 2019.

Sergeev, A. and Del Balso, M. Horovod: Fast and Easy
Distributed Deep Learning in TensorFlow. arXiv preprint
arXiv:1802.05799, 2018.

Simonyan, K. and Zisserman, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Pro-
ceedings of International Conference on Learning Repre-
sentations, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016.

TensorFlow. XLA: Optimizing Compiler for Machine Learn-
ing, 2021. https://www.tensorflow.org/xla.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X.,
Hu, Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An Ef-
ficient Communication Architecture for Distributed Deep
Learning on GPU Clusters. In Proceedings of USENIX
Annual Technical Conference, 2017.

Zheng, S., Huang, Z., and Kwok, J. Communication-
Efficient Distributed Blockwise Momentum SGD with
Error-Feedback. In Proceedings of Advances in Neural
Information Processing Systems, 2019.

Zhu, H., Phanishayee, A., and Pekhimenko, G. Daydream:
Accurately Estimating the Efficacy of Optimizations for
DNN Training. In Proceedings of USENIX Annual Tech-
nical Conference, 2020.

https://docs.nvidia.com/cuda/archive/10.2/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/archive/10.2/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/archive/10.2/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cupti/
https://docs.nvidia.com/cuda/cupti/
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://www.tensorflow.org/xla

A. Artifact Appendix
A.1 Abstract
dPRO is a diagnosis and optimization toolkit for distributed
DNN training jobs. We provide the source code of dPRO
for artifact evaluation. In case you do not have access to a
cluster to run distributed training jobs, we also provide traces
of one distributed DNN training jobs, with the configuration
of Horovod+TensorFlow+TCP on 2 8-V100-GPU machines.

A.2 Artifact check-list (meta-information)
• Algorithm: topological sorting for performance simulation
• Compilation: Bazel for TensorFlow
• Run-time environment: python3.7
• Hardware: A cluster with GPUs to run distributed training

jobs
• Metrics: Simulation Error
• Output: Simulated performance and optimization strate-

gies searched by our optimizer
• Experiments: performance simulation and searching for the

optimal optimization strategies for distributed DNN train-
ing jobs

• How much disk space required (approximately)?: 8G
• How much time is needed to prepare workflow (approxi-

mately)?: less than 1 hour if you only want to test the offline
analysis part of dPRO. If you want to profile training jobs
and apply search results, you need to install our customized
ML softwares, e.g., TensorFlow, it tends to take more than
2 hours.

• How much time is needed to complete experiments (approx-
imately)?: 2 hours.

• Publicly available?: Yes
• Workflow framework used?: Shell commands
• Archived (provide DOI)?: 10.6084/m9.figshare.19165622

A.3 Description
A.3.1 How delivered
Our source code and sample traces are available on Github
https://github.com/joapolarbear/dpro/releases/

tag/MLSys2022_AE. You can also access the source code,
scripts and sample traces through the following DOI: 10.
6084/m9.figshare.19165622.

A.3.2 Hardware dependencies
dPRO has no specific hardware dependencies. The hardware
required by the online profiling and search result applying
phases depends on that used by the training job. For the
remaining offline diagnosis and optimization phases, dPRO
runs on one device

A.3.3 Software dependencies
Our experiment depends on the following softwares.

For ML frameworks, we have customize MXNet and
TensorFlow for profiling and applying search results. So, if
you want to reproduce the experiments related to MXNet
and TensorFlow, please use our customized version.

Regarding to the communication backends, we customize
two popular frameworks - BytePS and Horovod - to collect
detailed communication traces. So if you want to reproduce
results with the PS architecture, please use our customized
BytePS, as well as customized pslite and ZMQ. For AllRe-
duce, please use our customized Horovod, as well as cus-
tomized NCCL.

Please find the customized software using the following
links.

• MXNet: https://github.com/joapolarbear/incubator-mxnet/
tree/mlsys2022

• TensorFlow: https://github.com/joapolarbear/tensorflow/
tree/mlsys2022

• BytePS: https://github.com/joapolarbear/byteps/

tree/mlsys2022

• pslite: https://github.com/joapolarbear/ps-lite/tree/
mlsys2022

• ZMQ: https://github.com/chenyu-jiang/libzmq/commit/
5ed25589f000dc613e1a8575ba193eb78eb9b86e

• Horovod: https://github.com/joapolarbear/horovod/
tree/mlsys2022

• NCCL: https://github.com/joapolarbear/nccl/tree/
mlsys2022

Benchmarks
• BERT: https://github.com/joapolarbear/bert/tree/
mlsys2022

• gluon-nlp: https://github.com/joapolarbear/gluon-nlp/
tree/mlsys2022

Other tools you may find useful:
• spdlog: https://github.com/gabime/spdlog/commit/

6aafa89d20eef25ec75462ffb7eedc328f135638, used in
customized ZMQ.

• nvprof2json: https://github.com/joapolarbear/nvprof2json:
convert nvprof results to JSON format.

• catapult: https://github.com/joapolarbear/catapult:
convert JSON files to a HTML in the format of chrome://tracing.

Follow the instructions in dpro/docs/dependency.md

to install frameworks according to the configuration you
want to evaluate.

A.3.4 Data sets
Currently, we use synthetic data for the training jobs in our
experiments.

A.4 Installation
It’s convenient to install dPRO toolkit, by following the
instructions below. First, uncompress the source code to the
folder dpro, then

1

https://github.com/joapolarbear/dpro/releases/tag/MLSys2022_AE
https://github.com/joapolarbear/dpro/releases/tag/MLSys2022_AE
10.6084/m9.figshare.19165622
10.6084/m9.figshare.19165622
https://github.com/joapolarbear/incubator-mxnet/tree/mlsys2022
https://github.com/joapolarbear/incubator-mxnet/tree/mlsys2022
https://github.com/joapolarbear/tensorflow/tree/mlsys2022
https://github.com/joapolarbear/tensorflow/tree/mlsys2022
https://github.com/joapolarbear/byteps/tree/mlsys2022
https://github.com/joapolarbear/byteps/tree/mlsys2022
https://github.com/joapolarbear/ps-lite/tree/mlsys2022
https://github.com/joapolarbear/ps-lite/tree/mlsys2022
https://github.com/chenyu-jiang/libzmq/commit/5ed25589f000dc613e1a8575ba193eb78eb9b86e
https://github.com/chenyu-jiang/libzmq/commit/5ed25589f000dc613e1a8575ba193eb78eb9b86e
https://github.com/joapolarbear/horovod/tree/mlsys2022
https://github.com/joapolarbear/horovod/tree/mlsys2022
https://github.com/joapolarbear/nccl/tree/mlsys2022
https://github.com/joapolarbear/nccl/tree/mlsys2022
 https://github.com/joapolarbear/bert/tree/mlsys2022
 https://github.com/joapolarbear/bert/tree/mlsys2022
https://github.com/joapolarbear/gluon-nlp/tree/mlsys2022
https://github.com/joapolarbear/gluon-nlp/tree/mlsys2022
https://github.com/gabime/spdlog/commit/6aafa89d20eef25ec75462ffb7eedc328f135638
https://github.com/gabime/spdlog/commit/6aafa89d20eef25ec75462ffb7eedc328f135638
https://github.com/joapolarbear/nvprof2json
https://github.com/joapolarbear/catapult

$ cd dpro && bash setup.sh && cd ..

Then enter dpro cli. If you see the following outputs,
dPRO has been successfully installed.

[dPRO] dpro: missing path

[dPRO] usage: dpro <option> <path>

[<remaining_args>]

A.5 Experiment workflow
A.5.1 Profiling
Regarding to dPRO’s profiler, it consists of two phases:

The first phase is online profiling, which profiles raw
traces for distributed DNN training jobs. This phase requires
a cluster of devices with certain compute capacity to run a
distribute DNN training job. For example, in our experiment,
we use a cluster with 16 devices to run a training job with
Horovod+TensorFlow+ResNet50 and each device contains
8 V100 GPUs. We recommend you using the traces we
provide to reproduce our results, in case you can not access
a large scale cluster to run and profile a distributed training
job. If you want to profile a training job yourself, please
follow the instructions in dpro/docs/profile.md.

The second phase is offline analysis, including time align-
ment and global DFG construction. Therefore, this phase
does not require too much compute resources.

You can refer to dpro/docs/usage.md for the detailed
usage of dPRO’s command line toolkit. From now, we will
present some sample commands to diagnose traces we pro-
vide. To construct a global timeline and global DFG, you can
enter the following commands:

$ dpro_cli collect <trace_directory> --force

You will get the following files

• bps trace final.json: aligned traces from all workers
• trail dag.gml: global DFG
• statistic.txt: statistic results

A.5.2 Simulation
Similar to dPRO’s profiler, dPRO’s replayer can also run
in an offline manner on one moderate device, even on our
own laptops. You can run simulation using the following
commands

$ dpro_cli replay <trace_directory>

A.5.3 Optimization
As for dPRO’s optimizer, there are also two phases.

The first phase is to run the search process for certain
optimization techniques. Below is an example to search for
the optimal tensor fusion strategies.

$ dpro_cli optimize <trace_directory>

--sub_option tsfs

By default, the workspace for the search process is <
trace directory > /.opt ws. You can find the search re-
sults cluster mapping.txt there.

The second phase is to apply the search result, which
usually requires a cluster to run a distributed DNN training
job. You can apply the searched tensor fusion strategies by
setting the following environment variables.

export

HOROVOD_TENSOR_GROUP_FILE=/path/to/cluster_mapping.txt

Then launch the distributed DNN traning job again to see the
speedup.

A.6 Evaluation and expected result
A.6.1 Diagnosis
The profiling and statistic results shows ”<Overall> step 3
is the one closest to average 226.956266 (± 10.564934) ms”,
which means the statistic iteration time is 226.956266 ms.
The simulation results shows ”<Overall> step 0 is the one
closest to average 238.481682 (± 0.000000) ms” for dPRO’s
replayer and ”<Overall> step 0 is the one closest to average
108.799021 (± 0.000000) ms” for Daydream, which means
dPRO’s replayer’s simulation result is more accurate than
that of Daydream.

A.6.2 Optimization
During the search process for tensor fusion, you will see
logs like ”Tensor Fusion: fusing 198 199 is better...” or
”Tensor Fusion: fusing 192+194+195+197 193 is worse ...”.
Here numbers denotes tensor IDs and the mapping results
is stored in /host0/0/gradient name list.json under the
trace directory we provide.

A.7 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.
html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/
artifact-review-badging

2

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

