
2632 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

Datacast: A Scalable and Efficient Reliable Group
Data Delivery Service for Data Centers

Jiaxin Cao, Chuanxiong Guo, Guohan Lu, Yongqiang Xiong, Yixin Zheng, Yongguang Zhang, Yibo Zhu,
Chen Chen, and Ye Tian

Abstract—Reliable Group Data Delivery (RGDD) is a pervasive
traffic pattern in data centers. In an RGDD group, a sender
needs to reliably deliver a copy of data to all the receivers.
Existing solutions either do not scale due to the large number
of RGDD groups (e.g., IP multicast) or cannot efficiently use
network bandwidth (e.g., end-host overlays).

Motivated by recent advances on data center network topology
designs (multiple edge-disjoint Steiner trees for RGDD) and
innovations on network devices (practical in-network packet
caching), we propose Datacast for RGDD. Datacast explores two
design spaces: 1) Datacast uses multiple edge-disjoint Steiner
trees for data delivery acceleration. 2) Datacast leverages in-
network packet caching and introduces a simple soft-state based
congestion control algorithm to address the scalability and
efficiency issues of RGDD.

Our analysis reveals that Datacast congestion control works
well with small cache sizes (e.g., 125KB) and causes few duplicate
data transmissions (e.g., 1.19%). Both simulations and experi-
ments confirm our theoretical analysis. We also use experiments
to compare the performance of Datacast and BitTorrent. In
a BCube(4, 1) with 1Gbps links, we use both Datacast and
BitTorrent to transmit 4GB data. The link stress of Datacast is
1.01, while it is 1.39 for BitTorrent. By using two Steiner trees,
Datacast finishes the transmission in 16.9s, while BitTorrent uses
52s.

Index Terms—Multicast, congestion control, content distribu-
tion

I. INTRODUCTION

RELIABLE Group Data Delivery (RGDD) is widely used
in cloud services (e.g., GFS [15] and MapReduce [5])

and applications (e.g., social networking, Search, scientific
computing). In RGDD, we have a group which contains one
data source and a set of receivers. We need to reliably deliver
the same copy of bulk data from the source to all the receivers.

Existing solutions for RGDD can be classified into two
categories: 1) Reliable IP multicast. IP multicast suffers from
scalability issues, since it is hard to manage a large number
of group states in the network. Adding reliability is also

Manuscript received November 29, 2012; revised May 21, 2013.
J. Cao, C. Guo, G. Lu, Y. Xiong, and Y. Zhang are with Microsoft Research

Asia (e-mail: {jiacao, chguo, gulv, yqx, ygz}@microsoft.com). J. Cao is also
with University of Science and Technology of China.

Y. Zheng is with Tsinghua University (e-mail: zhengyx12@mails.tsinghua.
edu.cn).

Y. Zhu is with the University of California, Santa Barbara (e-mail: yi-
bo@cs.ucsb.edu).

C. Chen is with the University of Pennsylvania (e-mail: chenche@seas.
upenn.edu).

Y. Tian is with the University of Science and Technology of China (e-mail:
yetian@ustc.edu.cn).

Digital Object Identifier 10.1109/JSAC.2013.131205.

challenging, due to the ACK implosion problem [13]. 2) End-
host based overlays. Overlays are scalable, since devices in
the network do not maintain group states. Reliability is easily
achieved by using TCP in overlays. However, overlays do not
use network bandwidth efficiently. The same copy of data may
traverse the same link several times, resulting in high link
stress. For example, ESM [19] reported that the average and
worst-case link stresses are 1.9 and 9, respectively.

Motivated by the recent progresses on data center network
(DCN) topologies and network devices, we explore new
opportunities in supporting RGDD for DCN: 1) Recently
proposed DCN topologies have multiple edge-disjoint Steiner
trees1, which has not been well studied before. These multiple
Steiner trees may enable full utilization of DCN bandwidth.
2) There is a clear technical trend that network devices are
providing powerful packet processing abilities by integrat-
ing CPUs and large memory. This makes in-network packet
caching practical. By leveraging in-network packet caching,
we can address the scalability and bandwidth efficiency issues
of RGDD.

However, it is challenging to take advantage of these
opportunities. The multiple edge-disjoint Steiner trees prob-
lem has been studied for decades. Unfortunately, existing
algorithms [6] cannot generate enough edge-disjoint Steiner
trees within a short time, even in well structured data center
networks. Although network devices are becoming capable of
in-network packet caching, the resource is not unlimited. We
need to use as small caches as possible for each group to
maximize the number of simultaneously supported groups. At
the same time, we need to increase bandwidth efficiency by
reducing duplicate packets transmitted in the network.

In this paper, we design Datacast to address the above
challenges. Leveraging the properties of the DCN topologies,
Datacast introduces an efficient algorithm to calculate multiple
edge-disjoint Steiner trees, and then distributes data among
them. In each Steiner tree, Datacast leverages the concept of
CCN [14]. To help Datacast achieve high bandwidth efficiency
with small cache size in intermediate nodes, we design a rate-
based congestion control algorithm, which follows the clas-
sical Additive Increase and Multiplicative Decrease (AIMD)
approach. Datacast congestion control leverages a key ob-
servation: the receiving of a duplicate packet request at the
source can be interpreted as a congestion signal. Different
from previous work (e.g., TFMCC [27] and pgmcc [22]),

1In this paper, we define a Steiner tree as a tree whose root is the data
source, and spans all the receivers.

0733-8716/13/$31.00 c© 2013 IEEE

CAO et al.: DATACAST: A SCALABLE AND EFFICIENT RELIABLE GROUP DATA DELIVERY SERVICE FOR DATA CENTERS 2633

which uses explicit information exchanges between the source
and receivers, Datacast is much simpler. To understand the
performance of Datacast, we build a fluid model. By analyzing
the model, we prove that Datacast works at the full rate when
the cache size is greater than a small threshold (e.g., 125KB),
and also derive the ratio of duplicate data sent by the data
source (e.g., 1.19%). We have built Datacast in NS3, and
also have implemented it with the ServerSwitch [8] platform.
Simulations and experiments verify our theoretical results,
which suggest that Datacast achieves both scalability and high
bandwidth efficiency.

This paper makes the following contributions: 1) We design
a simple and efficient multicast congestion control algorithm,
and build a fluid model to understand its properties. 2) We
propose a low time-complexity algorithm for multiple edge-
disjoint Steiner trees calculation. 3) We implement Datacast
with the ServerSwitch platform, and validate its performance.

II. BACKGROUND

A. Reliable group data delivery

In data center applications and services, Reliable Group
Data Delivery (RGDD) is a pervasive traffic pattern. The
problem of RGDD is, given a data source, Src, and a set of
receivers, R1, R2, · · · , Rn, how to reliably transmit bulk data
from Src to all the receivers. A good RGDD design should be
scalable and achieve high bandwidth efficiency. The following
cases are typical RGDD scenarios.

Case 1: In data centers, servers are typically organized as
physical clusters. During bootstrapping or OS upgrading, the
same copy of the OS image needs to be transferred to all the
servers in the same cluster. A physical cluster is further divided
into sub-clusters of different sizes. A sub-cluster is assigned
to a service. All the servers in the same sub-cluster may need
to run the same set of applications. We need to distribute the
same set of program binaries and configuration data to all the
servers in the sub-cluster.

Case 2: In distributed file systems, e.g., GFS [15], a chunk
of data is replicated to several (typically three) servers to
improve reliability. The sender and receivers form a small
replication group. A distributed file system may contain tens
of Peta bytes using tens of thousands machines. Hence the
number of replication groups is huge. In distributed execution
engine, e.g., Dryad [20], a copy of data may need to be
distributed to many servers for JOIN operations.

Case 3: In Amazon EC2 or Windows AZure, a tenant may
create a set of virtual machines. These virtual machines form
an isolated computing environment dedicated to that tenant.
When setting up the virtual machines, customized virtual
machine OSes and application images need be delivered to
all the physical servers that host these virtual machines.

Figure 1(a) and 1(b) show the group size and traffic volume
distributions for a RGDD service in a large production data
center. We use these two figures to show the challenges in
supporting RGDD.
The system should be scalable. As we have mentioned in the
above scenarios, we need to support a large number of RGDD
groups in large data centers. Figure 1(a) further shows that the
group size varies from several servers to thousands of servers

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

C
D

F

Group size (the number of servers)

Group size distribution

(a) The group size distribution in a large data center.

10-6

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100 101 102 103 104

C
D

F

Data size (MB)

Data traffic volume distribution

(b) The traffic volume distribution for a large distributed execution engine.

Fig. 1. RGDD groups and traffics in data centers.

and even more. The large number of groups and the varying
group sizes pose scalability challenges, since maintaining a
large number of group states in the network is hard (as
demonstrated by IP multicast).
Bandwidth should be efficiently and fully used. Figure 1(b)
shows the traffic volume distribution for group communica-
tions. It shows that the groups transmitting more than 550MB
data contribute 99% RGDD data traffic volume. Due to the
large number of groups and the large data sizes, RGDD
contributes a significant amount of traffic. This requires that
RGDD uses network bandwidth efficiently. On the other hand,
the new DCN topologies (e.g., BCube [7] and CamCube [9])
provide high network capacity with multiple data delivery
trees. An RGDD design should take full advantage of these
new network topologies to speedup data delivery.

In what follows, we introduce recent technology progresses
on DCN topologies and network devices, which we leverage
to address the above challenges.

B. New opportunities

Multiple edge-disjoint Steiner trees. Different from the In-
ternet, DCNs are owned and operated by a single organization.
As a result, DCN topologies are known in advance, and we
can assume that there is a centralized controller to manage
and monitor the whole DCN. Leveraging such information,
we can improve RGDD efficiency by building efficient data
delivery trees. Furthermore, several recently proposed DCNs
(e.g., BCube [7] and CamCube [9]) have multiple edge-
disjoint Steiner trees which can be used to further accelerate
RGDD.
In-network packet caching becomes practical. Recently, we
observe a clear technical trend for network devices (switches
and routers). First, powerful CPUs and large memory are
being included in network devices. The new generation of
devices are equipped with multi-core X64 CPUs and several

2634 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

GB memory, e.g., Arista 7504 has 2 AMD Athlon X64
Dual-Core CPUs and 4GB DRAM. Second, the merchant
switching ASIC, CPU and DRAM can be connected together
by using the state-of-the-art PCI-E interface, as demonstrated
by research prototype (e.g., ServerSwitch [8]) and products
(e.g., Force10 S7000 [21]). With the new abilities of network
devices, many in-network packet processing operations (e.g.,
in-network packet caching) become practical. In this paper,
we explore in-network packet caching. By turning hard-states
for group managements in intermediate network devices into
soft-states based packet caching, we address the scalability
and efficiency issues of RGDD.

However, technical challenges exist to take advantage of
these opportunities. First, given the network topology, cal-
culating one single Steiner tree with minimal cost is NP-
hard [16]. What is more challenging is that we have to
calculate multiple Steiner trees, and the calculation has to
be fast enough (otherwise it may be more time consuming
than data dissemination). Second, we have a large number
of RGDD groups to support and have limited resources in
intermediate network devices. How to use as few resources as
possible to support more RGDD groups is a challenge.

We design Datacast to explore the new design spaces pro-
vided by the new opportunities. The design goal of Datacast
is to achieve scalability and also high bandwidth efficiency. In
what follows, we first introduce the architecture of Datacast,
then describe how Datacast addresses the above technical
challenges.

III. DATACAST OVERVIEW

Figure 2 shows the architecture of Datacast. There are five
components in Datacast: Fabric Manager, Master, data source,
receivers, and intermediate devices (IMD). Fabric Manager
is a centralized controller, which maintains a global view
of the network topology. When we need to start an RGDD
group, we first start a Master. The Master will get topology
information from Fabric Manager and then calculate multiple
edge-disjoint Steiner trees. After that, the Master will send the
tree information and other signalling messages (e.g., which
file to fetch) to receivers via a signalling protocol. Then
data transmission begins. When transmitting data, the data
source will run our congestion control algorithm. During the
whole process, intermediate devices do not interact with Fabric
Manager, Master, the source or any receivers. These devices
just cache and service data based on their local decisions.

To deliver signalling messages efficiently, we have built a
signalling protocol, which uses a hierarchical transmission tree
structure (generated by the Breadth First Search algorithm)
to transmit signalling messages. It encodes the transmission
tree into the message. Each node in the transmission tree
decodes the signalling message, splits the tree into subtrees
and forwards each subtree to its corresponding children. When
the signalling messages reach the leaves, ACKs are generated
and aggregated along the paths from leaves to the root. Using
the message split and aggregation, signalling messages can be
reliably and efficiently delivered.

In large data centers, failures are inevitable. Different from
BitTorrent [4], which achieves fault tolerant in a distributed

Fig. 2. The architecture of Datacast.

way, Datacast handles network failures in a centralized man-
ner. In Datacast, Fabric Manager monitors the network status
in real time. When network failures happen, Fabric Manager
will send the new topology information to all the Masters, and
each Master will recalculate the Steiner trees and notify the
affected receivers accordingly.

To monitor the network status in real time, LSAs (Link State
Advertisement) are used. A network device sends LSAs to all
its direct neighbors under two conditions: 1) A network device
sends LSAs periodically (e.g., 5s). 2) A network device sends
LSAs when it detects link state changes (e.g., a link encounters
a failure). To detect link state changes, each network device
uses a simple heartbeat protocol. When a network device
receives a new LSA, it forwards the LSA to all its ports except
the incoming one. Fabric Manager uses the latest received
LSAs to decide the real time network status and construct the
spanning tree for signaling delivery.

In the following sections, we will present two key designs of
Datacast: the fast calculation of multiple edge-disjoint Steiner
trees, and the Datacast congestion control protocol which helps
Datacast achieve scalability and high bandwidth efficiency.

IV. MULTIPLE EDGE-DISJOINT STEINER TREES IN DCN
In this section, we first present the algorithm on multiple

Steiner trees calculation, then discuss how to use these mul-
tiple Steiner trees for data delivery.

A. Calculation of multiple Steiner trees

It has been known that using multiple Steiner trees can
improve the transmission efficiency [3]. However, constructing
multiple edge-disjoint Steiner trees in a given (data center)
topology has not been investigated before. The problem is,
for a given network G(V,E), where V is the set of nodes
and E is the set of edges, and a group D containing one
source and a set of receivers, how to calculate the maximum
number of edge-disjoint Steiner trees. This is the well known
multiple edge-disjoint Steiner trees problem, which has been
studied for decades. Unfortunately, calculating Steiner trees is
NP-hard [16].

CAO et al.: DATACAST: A SCALABLE AND EFFICIENT RELIABLE GROUP DATA DELIVERY SERVICE FOR DATA CENTERS 2635

// G is the DCN network, D is the Datacast group.
CalcSteinerTrees(G, D):

// 1) construct multiple spanning trees
SPTSet = G.CalcSpanningTrees(D.src);

// 2) prune each spanning trees
foreach (SPT in SPTSet)

SteinerTree = Prune(SPT, D);
SteinerTreeSet.add(SteinerTree);

// 3) repair Steiner trees if they are broken
foreach (SteinerTree in SteinerTreeSet)

if (SteinerTree has broken links)
if (RepairSteinerTree(SteinerTree, G) == false)

Release(SteinerTree);
SteinerTreeSet.remove(SteinerTree);

return SteinerTreeSet;

Fig. 3. The algorithm for multiple edge-disjoint Steiner trees calculation.

We therefore turn our attention to heuristic algorithms. One
reasonable approach is as follows. There are algorithms for
calculating multiple edge-disjoint spanning trees (e.g., [6]).
We can first find the multiple edge-disjoint spanning trees, and
then prune the unneeded edges and nodes to get the Steiner
trees.

However, the generic multiple spanning trees algorithms
do not work well for our case. First, the time complexity
of calculating the spanning trees is high. The best algorithm
we know is Po’s algorithm [25]. Its time complexity is
O((k′)2|V ||E|), which is too high for RGDD (we will see
that in Section VI-A1). Second, the depths of the spanning
trees generated by the generic algorithm can be very large.
For example, the average and worst-case depths of the trees
for RGDDs in BCube can be 1000+ and 2000+ hops, whereas
the network diameter is only 8.

Fortunately, we observe that DCNs, e.g., Fattree, BCube
and multi-dimensional Torus, are well structured topologies.
These topologies are also well studied. Multiple spanning trees
construction algorithms for these topologies are already known
(e.g., [7], [23]), and these spanning trees have good qualities,
e.g., small tree depths. However, network failures (e.g., link
failures) are common in real networks. Without reorganizing
the spanning trees, network failures could possibly break all
the trees generated by these algorithms. In order to solve the
problem, we propose a multiple edge-disjoint Steiner trees
algorithm, which is shown in Figure 3. The algorithm contains
three parts.

The first part of this algorithm uses specific algorithms to
construct spanning trees for specific DCN topologies (without
considering network failures). For example, in Fattree [1],
Breadth First Search (BFS) can generate a spanning tree,
and the spanning trees algorithms for BCube and Torus are
proposed in [7] and [23]. The time complexity of these
algorithms are O(k|V |), where k is the number of edge
disjoint Spanning trees.

The second part prunes the links that are not used in data
transmissions. To prune the spanning tree, we calculate the
paths from the receivers to the source in the spanning tree.
Then the set of links involved in the paths form a Steiner
tree. The time complexity of pruning all the spanning trees is
O(|E|), since each link will only be traversed once.

The third part tries to repair the broken trees affected by link
failures. The core idea of repairing a Steiner tree is: we first
release the broken tree, and then try to use BFS to traverse
the free and active links to construct a new Steiner tree. The
repairing algorithm applies this idea to the broken trees one by
one as shown in Figure 3. Although this idea is simple, it has
the following benefits: 1) It guarantees at least one Steiner tree
if all the receivers are connected. 2) The depth of the tree is
locally minimized due to the use of BFS. The time complexity
of repairing all the trees is O(k′|E|), where k′ is the number
of Steiner trees to be repaired.

Our multiple Steiner trees calculation algorithm is fast. The
time complexity of the algorithm is O(k|V |) + O(|E|) +
O(k′|E|), which contains the construction and pruning of
spanning trees and the repairing of Steiner trees. Our algorithm
also has good performance (in terms of the number of Steiner
trees) and is fault tolerant. Even if there are network failures,
we can still create a number of Steiner trees. We have derived
an upper bound of the number of Steiner trees, and found
that the number of Steiner trees generated by our algorithm
is very close to the upper bound (details will be shown in
Section VI-A2).

B. Data distribution among multiple Steiner trees

To use multiple Steiner trees for data delivery, we first split
the data into blocks, and then feed each tree with a block.
When a Steiner tree finishes transmitting the last data packet of
the current block, we know that the transmission of the current
block is finished. Then the data source will use our signalling
protocol to deliver the information of the next block to be
transferred, e.g., the name of the block, to the receivers. After
that the Steiner tree will start to transmit the next block. This
process repeats until all the blocks are successfully delivered.

V. DATACAST TRANSPORT PROTOCOL

In this section, we introduce in-network packet caching in
Datacast, present the Datacast congestion control algorithm
and discuss the cache management mechanism. By building
a fluid model for the congestion control, we also derive the
condition under which Datacast operates at the full rate, and
its efficiency.

A. Data transmission with in-network caching

In-network packet caching has been used in many previous
works, including Active Networking [24], RE (redundancy
elimination) [2], and CCN [14]. Datacast is built on top of
CCN. In CCN, every single packet is assigned a unique,
hierarchical name. A user needs to explicitly send an interest
packet to ask for the data packet. Any intermediate device
that has the requested data along the routing path can respond
with the data packet. The network devices along the reverse
routing path then cache the data packet in their content stores
for later uses. CCN therefore turns group communication into
in-network packet caching.

Datacast improves CCN as follows: 1) Datacast introduces
a congestion control algorithm to achieve scalability and high
bandwidth efficiency. 2) Datacast only caches data packets at

2636 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

Fig. 4. An illustration of in-network caching.

branching nodes, which helps the whole system save memory.
3) Datacast uses source routing to enforce routing paths, so
no Forwarding Information Base (FIB) management is needed
at the intermediate devices.

Figure 4 shows an example of data delivery with in-network
caching supports. The green node, 00, is the data source. The
blue nodes, 12, 13, 21 and 33, are the receivers. Two Steiner
trees calculated by the algorithm proposed in Section IV
are shown in solid lines and dashed lines separately. The
transmission in Steiner tree A could take the following steps:
1) Node 21 sends an interest packet to node 00 through the
path {21, 11, 01, 00}. Node 00 sends the requested data back
along the reverse path. Then the data packet is cached at the
branch node 01. 2) Node 12 sends an interest packet along
the path {12, 02, 01, 00} asking for the same data. When the
interest arrives at node 01, node 01 finds that it has already
cached the data packet, so it terminates the interest and sends
back the data packet. Then the data are cached at node 02
and 12. 3) Node 13 sends its interest along the path {13, 12,
02, 01, 00}. Then the data is replied by node 12, since it has
cached the data. 4) Node 33 sends its interest along the path
{33, 32, 02, 01, 00}, and node 02 returns the data packet.

Note that the execution order of the four steps is not
important. They can be executed in an arbitrary order, and
still achieve the same result. The reason is that, in the end,
all the steps together cover the same Steiner tree by traversing
every link of the tree exactly once.

B. Datacast congestion control algorithm

Datacast congestion control algorithm works for a single
Steiner tree. It is one of the most important part of Datacast
to realize its design goal, i.e., to achieve scalability and high
bandwidth efficiency. Since Datacast turns hard group states
into soft-state based packet caching, it is natural to require
that the cache size in intermediate devices for each group is as
small as possible (so as to support more groups), and the rates
of receivers are synchronized (so as to improve bandwidth
efficiency). If the rates of receivers are synchronized, only
one copy of each packet is delivered in a Steiner tree. When

receivers have different receiving bandwidth, we expect all the
rates of receivers are synchronized to the receiving rate of the
slowest receiver.

A synchronized scheme may suffer from significant
throughput degradation if a receiver in the group has a small
receiving rate. In this case, we may either kick out the very
slow receivers, or split the data delivery group into multiple
ones. These topics are our future work.

Datacast uses the classical AIMD for congestion control.
This is not new. What is new in Datacast is how congestion
is detected. Datacast uses duplicate interests as congestion
signals. A duplicate interest is an interest requiring the same
data which has been asked before. The source receives a
duplicate interest in the following two cases: 1) The network is
congested, so some packets are dropped. Then the receiver will
retransmit the interest, which serves as a duplicate interest. 2)
Receivers are out of sync. When slow receivers cannot keep
up with the fast ones, their interests will not be served by the
cache of the intermediate devices. The interests will finally be
sent to the data source, which serves as duplicate interests. In
these cases, the source needs to slow down its sending rate.
On the other hand, if there is no congestion and the rates
of receivers are well synchronized, there will be no duplicate
interests, and the source should increase its sending rate.

After congestion is detected, the rate adjustment becomes
easy: when the source receives a duplicate interest, it decreases
its sending rate by half; when no duplicate interest is received
in a time interval T , the source increases the sending rate
by δ. Datacast congestion control is therefore rate-based. The
source maintains and controls a sending rate r2. Note that the
sending rate of the duplicate data packet is not constrained
by the congestion control, since the corresponding duplicate
interest packets are from the slowest receiver, and the receiving
rate of the slowest receiver should not be further reduced.

At the receivers’ side, each receiver is given a fixed number
of credit, w, which means that one receiver can send at most
w interests into the network. When a receiver sends out an
interest, the credit is decremented by one. When it receives a
data packet, its credit is incremented by one. In Datacast, the
guideline for setting w is to saturate the pipe. In a DCN with
1Gbps link, when the RTT is 200us (which is a typical network
latency in a data center environment), w = 16 can saturate the
link. To achieve reliability, the receiver retransmits an interest
if the data packet does not come back after a timeout. The
timeout is calculated in the same way as TCP.

To summarize, Datacast congest control algorithm works as
follows.

r = {
r
2 when a duplicate interest is received.
r + δ when there is no duplicate interest in T.

As we can see, Datacast congestion control algorithm is
simple. The source does not need to know which receiver is
the slowest one, and what is the available bandwidth of that
slowest receiver. In Section V-D, we will show analytically
that Datacast uses small cache sizes and results in few dupli-
cate data transmissions.

2To be exact, this is the rate of the source’s token bucket.

CAO et al.: DATACAST: A SCALABLE AND EFFICIENT RELIABLE GROUP DATA DELIVERY SERVICE FOR DATA CENTERS 2637

C. Cache management

To prevent cache interferences among different transmission
trees, we use a per-tree based cache replacement algorithm.
Each device uses a per Datacast tree based cache with size
C. This is possible due to the following reasons: 1) A
Datacast tree can be uniquely identified by a global unique
tree transmission id (assigned by Master). 2) The cache size
needed by each tree is small (as we will show in the next
subsection).

In each tree, we find that the most popular data packets are
the new ones, since new data packets will always be accessed
by other receivers in the future. To keep new data packets in
caches and erase old data packets, Datacast chooses First In
First Out (FIFO) as its per-tree cache replacement policy. To
prevent unpopular data packets from being put into caches,
Datacast does not cache duplicate data packets.

Note that although this is a per-tree strategy, it is a scalable
solution. The reasons are: 1) Compared with IP multicast, we
do not need any protocol (e.g., IGMP) to maintain Datacast’s
per-tree states. Switches just use local decisions to manage
its cache. 2) Datacast can work efficiently with small caches,
e.g., 125KB, and large memory is expected for future network
devices, e.g., 16GB memory for a switch. If it uses 4GB as
Datacast cache, a network device can support up to 32k (≈
4GB

125KB) simultaneous trees.

D. Properties of Datacast congestion control algorithm

In this subsection, we study the following questions: 1)
What is the condition for Datacast to work at the full rate (i.e.,
the receiving rate of the slowest receiver)? 2) When Datacast
works at the full rate, how many duplicate data will be sent
from the data source? We define the duplicate data ratio as
the ratio of the duplicate data sent by the source to all the
new data sent. To answer these questions, we have built a
fluid model and derived the following theorems3. (Details are
presented in Appendix.)

Theorem 1: Datacast works at the full rate, i.e., the rate of
the slowest receiver, R, if the cache size, C, satisfies

C >
R2T

2δ
− (w ·MTU −R ·RTTm) (1)

where RTTm is the slowest receiver’s minimum round trip
time (the pingback RTTs).

Theorem 2: When Datacast works at the full rate, the
duplicate data ratio of Datacast is lower than or equal to

δ
T

δ
T + R

2MTU
R +RTTm

the equal sign is true when RTTm = 0.
Theorem 1 tells us Datacast works at the full rate when the

cache size is greater than R2T
2δ − (w · MTU − R · RTTm).

For example, when δ = 5Mbps, T = 1ms, R = 100Mbps and
the credit number is just enough to saturate the pipe (i.e.,
w · MTU = R · RTTm), Datacast works at the full rate
when the cache size is larger than 125KB. Theorem 2 reveals
the bandwidth efficiency of Datacast. In the above example,

3These results nicely fall back to the ones in our previous work [10] when
latencies are ignored.

 0

 5

 10

 15

 20

100 101 102 103 104

T
im

e
(m

s)

Group Size

Fattree(24, 3), LFR=1%
Fattree(24, 3), LFR=3%
Fattree(24, 3), LFR=5%

BCube(8, 3), LFR=1%
BCube(8, 3), LFR=3%
BCube(8, 3), LFR=5%
Torus(16, 3), LFR=1%
Torus(16, 3), LFR=3%
Torus(16, 3), LFR=5%

(a) The running times.

 0

 2

 4

 6

 8

 10

100 101 102 103 104 105

A
ve

ra
ge

 S
te

in
er

 T
re

e
N

um
be

r

Group Size

Fattree(24, 3), LFR=1%
Fattree(24, 3), LFR=3%
Fattree(24, 3), LFR=5%

BCube(8, 3), LFR=1%
BCube(8, 3), LFR=3%
BCube(8, 3), LFR=5%
Torus(16, 3), LFR=1%
Torus(16, 3), LFR=3%
Torus(16, 3), LFR=5%

(b) The numbers of Steiner trees.

Fig. 5. Performance of our multiple Steiner trees algorithm.

the duplicate data ratio is 1.19% when RTT is ignorable.
Theorem 1 and 2 tell us that Datacast achieves the goal of
high bandwidth efficiency, and also meets the requirement of
using small cache size in the intermediate devices.

VI. SIMULATION

A. Evaluation of the multiple Steiner trees algorithm

To study the performance of the multiple Steiner trees
algorithm, we use a Dell PowerEdge R610 server, which has
two E5520 Intel Xeon 2.26GHz CPUs and 32GB RAM. We
study our algorithm under three topologies, Fattree(24, 3),
BCube(8, 3) and Torus(16, 3). The BCube and Torus contain
4096 servers, while the Fattree contains 3456 servers. For
each simulation, we randomly generate link failures. The link
failure rates (LFR) include 1%, 3% and 5%. We ignore the
cases when the network is not connected.

1) Running time: Figure 5(a) shows the running times
of our algorithm. From the results, we can see that our
algorithm can finish all of the tree calculations within 10ms.
We compared our algorithm with the generic algorithm which
first calculates the spanning trees using Po’s algorithm [25],
then prunes them to get Steiner trees. The time complexity
of the generic algorithm is dominated by the spanning tree
calculation. The times needed for calculating spanning trees
for Fattree(24, 3), BCube(8, 3) and Torus(16, 3) are 1, 39 and
42 seconds respectively. This algorithm therefore cannot be
used in Datacast.

2) Steiner tree number: Figure 5(b) shows the numbers of
Steiner trees constructed by our algorithm. For BCube and
Torus, the numbers of Steiner trees decrease as the group size

2638 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

(a) Steiner Tree 1 (b) Steiner Tree 2

Fig. 6. The simulation and experiment setup.

and the link failure rate increase. This is expected, since a
large group would experience more link failures, and more
link failures will break more trees. Though Fattree has only
one Steiner tree, our algorithm helps on failure recovery when
the original tree is broken by link failures.

To check whether our algorithm can create enough Steiner
trees, we have derived an upper bound of the Steiner tree
number, which is the minimum value of the out-degree of the
source and the in-degrees of all the receivers. The Steiner tree
numbers produced by our algorithm are only 0.8% less than
the bounds on average.

3) Steiner tree depths: Our algorithm also guarantees small
tree depths. For example, when the link failure rate is 1%, the
average Steiner tree depths for BCube, Torus and Fattree, are
9.99, 24.31 and 6.00, respectively.

B. Micro benchmarks for Datacast congestion control algo-
rithm

We have built Datacast in NS3. In this subsection, we
use micro benchmarks to study Datacast congestion control
algorithm in a BCube(4, 1). We use a single multicast tree
shown in Figure 6(a). The green node, 00, is the source, while
the blue ones, 02, 10, 21, 23, 31 and 33, are the receivers. δ
= 5Mbps, T = 1ms and MTU = 1.5KB. The link rates are
1Gbps, and the propagation delays are 5us. We slow down
the link from switch <0,0> to node 02 to 100Mbps to make
node 02 the slowest receiver. The queue size for each link is
100 packets. The headers of the interest and data packets are
both 16 bytes. The initial rate of the source is 500Mbps.

1) Full Rate Cache Requirement: We first verify Theo-
rem 1. We vary the cache sizes from 8KB to 4096KB. Given
the credit numbers are 16, 48 and 72 packets, the bounds de-
rived by Theorem 1 are 102KB, 54KB and 18KB respectively.
The simulation results are shown in Figure 7(a). The results
suggest that Datacast works at the full rate when the cache
size is larger than the bound. Its throughput, 98.799Mbps, is
very close to the optimal results, which is 98.933Mbps (=
100Mbps × 1500−16

1500). The results also suggest that Datacast
experiences graceful throughput degradation when there is not
enough cache.

2) Duplicate Data Ratio: To verify Theorem 2, we vary the
rate increase, δ, from 0.10Mbps to 102.40Mbps. In an empty
network (no traffic), the round trip time is ignorable, so the

 80

 81

 82

 83

 84

 85

 86

 87

 88

 8 16 32 64 128 256 512 1024 2048 4096

F
in

is
h

T
im

e
(s

)

Cache Size (KB)

w = 16
w = 48
w = 72

(a) Datacast’s finish times under difference cache sizes.

10-4

10-3

10-2

10-1

100

 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4
D

up
lic

at
e

D
at

a
R

at
io

δ (Mbps)

Theoretical Results
Simulation

(b) Duplicate data ratio vs. δ

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16 32 64 128 256 512 1024 2048

D
up

lic
at

e
D

at
a

R
at

io

RTTm (us)

Theoretical Results
Simulation

(c) Duplicate data ratio vs. RTTm

Fig. 7. The finish times and duplicate data ratios of Datacast.

duplicate data ratio is δ
T /(

δ
T + R2

2MTU). From the results shown
in Figure 7(b), we can see that the duplicate data ratio derived
from our model is consistent with the simulation results.

We also study the duplicate data ratio under the congestion
case. We add a queueing delay at the slow link, which varies
from 1us to 2ms. The results are shown in Figure 7(c), which
suggest that Theorem 2 captures the trend of the increase of
duplicate data ratios as the latency grows. From the results,
we can also see that even if congestion happens, the duplicate
data ratio is still lower than 0.1.

3) Performance under packet losses: To see whether Data-
cast is resilient to packet losses, we randomly drop data
packets at the link from switch <0,0> to node 02. The cache
sizes are set to 128KB. When the packet loss rate is 1.02%,
the finish time only increases by 2.76% and the duplicate ratio
is 1.23%.

4) Fairness: In this simulation, we set all the links back
to 1Gbps. To study intra-protocol (inter-protocol) fairness, we
use the Datacast group to compete with nine other Datacast

CAO et al.: DATACAST: A SCALABLE AND EFFICIENT RELIABLE GROUP DATA DELIVERY SERVICE FOR DATA CENTERS 2639

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9

Group 10

(a) Intra-protocol fairness.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Datacast
TCP 1
TCP 2
TCP 3
TCP 4
TCP 5
TCP 6
TCP 7
TCP 8
TCP 9

(b) Inter-protocol fairness with TCP.

Fig. 8. Intra-protocol and inter-protocol fairness.

groups (TCP flows). Three of them start at 10s, end at 40s.
Six of them start at 20s, end at 30s. Figure 8 shows the results.
We can see that Datacast achieves good intra-protocol (inter-
protocol) fairness.

Datacast achieves good inter-protocol fairness with TCP,
since their additive increase parts are at the same magnitude.
In this simulation, we measure that the RTT of TCP is about
1ms when there are nine TCP flows and one Datacast group.
TCP increases its rate at the speed of 12Mbps (= MTU

RTT) per
RTT (1ms), while Datacast increases its rate at the speed of
5Mbps per millisecond. Therefore, Datacast and TCP achieve
good inter-protocol fairness.

5) Cache replacement algorithms: We study the perfor-
mance of Datacast with three different cache management
policies, Least Recently Used (LRU), Least Frequently Used
(LFU) and First In First Out (FIFO). The cache miss ratios
for LRU, LFU and FIFO are 3.90%, 1.63% and 1.12%,
respectively. FIFO achieves the minimum duplicate data ratio
of them, since it always stores new data packets in the cache,
which will be used in the future.

C. Performance comparison

BitTorrent was originally designed for P2P file sharing in
the Internet. Since a data center is a collaborative environment
and the network topology can be known in advance, we use
techniques similar to Cornet [11] to improve the original
BitTorrent. Cornet improvements include: a server does not
immediately leave the system after it receives all the content;
no SHA1 calculation per block; use large block size (4MB).
Cornet suggests using large block size (4MB). Our simulations
demonstrate that smaller block size results in better perfor-
mance. We choose 108KB as the block size in the simulations.
We call the Cornet optimized version BT-Cornet. Similar to
Cornet, we also consider the topology awareness. Since we
have rich topological information, we design the following

neighbor selection algorithm: a server selects 10 peers (when
the group size is less than 10, all the members are peers). It
sorts the group members via the distance. It prefers peers with
a small distance, but guarantees that at least one member (if
it exists) is selected as its peer at each distance range. Similar
to Cornet, tit-for-tat and choke-unchoke are disabled. We call
the optimized version BT-Optimized.

We use two metrics for the comparison. The first metric
is the network stress, which is the sum of all the bytes
transmitted on all the links. The second is the finish time.

In all the simulations, the source sends 500MB data.
Figure 9 shows the performance of Datacast, BT-Cornet,
BT-Optimized under different group sizes for three different
topologies, Fattree(24, 3), BCube(8, 3) and Torus(16, 3).
The group size varies from 8 to 1024. Our results clearly
demonstrate that Datacast is better than BT-Cornet and BT-
Optimized in terms of the network stress and the finish time.
On BCube and Torus, Datacast is much faster since each
server has multiple 1Gbps ports. In all the simulations, the
network stresses of BT-Optimized are 1.2-3.5X than Datacast,
and Datacast is 1.1-3.7X faster than BT-Optimized.

We also note that in our simulations, when the topology is
Fattree, the finish time with BT-Cornet is smaller than with
BT-Optimized. This is because with BT-Optimized, we prefer
peers that are close with each other. This preference may result
in small cliques which may not be fully connected. BCube
does not have such an issue because its structure does not
have hierarchy.

In the experiments, Datacast’s finish times are quite close to
the ideal cases. There is one Steiner tree in Fattree(24, 3), and
there are four Steiner trees in BCube(8, 3), and six in Torus(16,
3). Therefore the ideal finish times are 4s, 1s and 0.67s for
Fattree(24, 3), BCube(8, 3) and Torus(16, 3), respectively. The
finish times of Datacast are 0.67% larger than the ideal cases
on average. Datacast is also efficient. The average link stress
of Datacast is only 1.002, which means that each packet only
traverses each Steiner tree link 1.002 times on average.

VII. IMPLEMENTATION

A. ServerSwitch based implementation

We have implemented Datacast using the design shown in
Figure 2. Fabric Manager, Master, data source and receivers
are all implemented as user-mode applications. Each node in
the data center runs a Datacast daemon, which is responsi-
ble for forwarding and receiving signalling messages. When
Datacast is trying to start a group for data transmission, it
first starts a Master process. The Master process calculates
multiple Steiner trees, and then sends signalling messages to
the group members. The daemons on these nodes will start
the data source process and the receiver processes. Then the
transmission starts.

To cache data packets in intermediate nodes, we use the
ServerSwitch platform [8]. ServerSwitch is composed of an
ASIC switching chip and a commodity server. The switching
chip is connected to the server CPU and memory using PCI-
E. ServerSwitch’s switching chip is programmable. It uses a
TCAM table to define operations for specific types of packets.
To implement data packet caching in switches, we use User

2640 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

 2

 3

 4

 5

 6

 7

 8

 9

 8 16 32 64 128 256 512 1024

F
in

is
h

T
im

e
(s

)

Group Size

BT-Optimized
BT-Cornet

Datacast

 0

 500

 1000

 1500

 2000

 2500

 3000

 8 16 32 64 128 256 512 1024

N
et

w
or

k
S

tr
es

s
(G

B
)

Group Size

BT-Optimized
BT-Cornet

Datacast

(a) Fattree

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 8 16 32 64 128 256 512 1024

F
in

is
h

T
im

e
(s

)

Group Size

BT-Optimized
BT-Cornet

Datacast

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 8 16 32 64 128 256 512 1024

N
et

w
or

k
S

tr
es

s
(G

B
)

Group Size

BT-Optimized
BT-Cornet

Datacast

(b) BCube

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 32 64 128 256 512 1024

F
in

is
h

T
im

e
(s

)

Group Size

BT-Optimized
BT-Cornet

Datacast

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 32 64 128 256 512 1024

N
et

w
or

k
S

tr
es

s
(G

B
)

Group Size

BT-Optimized
BT-Cornet

Datacast

(c) Torus

Fig. 9. Performance comparison of Datacast and BitTorrent.

Defined Lookup Keys (UDLK) to forward data packets to the
Datacast kernel mode driver at branch nodes. The driver is
used to do the in-network data packet caching. At non-branch
nodes, the data packets are directly forwarded by hardware.

B. Evaluation

In this subsection, we use our real testbed implementation
to evaluate Datacast. We use a BCube(4, 1) with 1Gbps links
for our study.

1) Efficiency study: We study Datacast’s performance when
different cache sizes are set for branching nodes. We use
a single Steiner tree shown in Figure 6(a) and slow down
the link from switch <0,0> to node 02 to 100Mbps. We let
δ = 5Mbps, T = 1ms and w = 8. The minimum round trip
time is about 350us. Based on Theorem 1, Datacast works
at the full rate when the cache size is larger than 120KB.
When we use 64KB (or 32KB) cache, the average throughput
is 96.774Mbps (or 88.757Mbps), which is still acceptable due
to the graceful throughput degradation of Datacast. When the
cache size is 128KB, the average throughput is 98.684Mbps,
and the duplicate data ratio is 1.45%, which is lower than the
theoretical bound derived by Theorem 2, 2.87%.

2) Performance comparison: We compare the performance
of Datacast with BitTorrent (we use μtorrent). In this experi-
ment, we use both Datacast and BitTorrent to transfer 4GB

TABLE I
PERFORMANCE COMPARISON OF DATACAST AND BITTORRENT.

Finish Time (s) Link Stress
Datacast 16.9 1.01

BitTorrent 41-52 1.39

data. The cache size on each branch node is 512KB. For
Datacast, δ = 125Mbps and T = 1ms.

Datacast finishes the transmission within 16.9s. The source
achieves 1.89Gbps throughput on average, which is close to
the 2Gbps capacity of the two 1Gbps Steiner trees. The link
stress of Datacast is 1.01. This means that Datacast achieves
high bandwidth efficiency, since each packet only traverses
each Steiner tree link 1.01 times on average. We compare
Datacast with BitTorrent. Using BitTorrent, the receivers finish
the downloading in 41-52s, and the link stress is 1.39. BitTor-
rent is 2.75 times slower than Datacast on average, while its
link stress is 1.38 times larger.

3) Failure handling: To study the failure handling of
Datacast, we manually tear down the slow link. Our Fabric
Manager detects the link failure in 483ms, and then notifies all
the Masters. The Master uses the signalling protocol proposed
in Section III to deliver the signalling messages to all the
receivers in 2.592ms. (As a comparison, using TCP to send the
signalling messages to receivers in parallel takes 20.122ms.)
Then the transmission continues.

CAO et al.: DATACAST: A SCALABLE AND EFFICIENT RELIABLE GROUP DATA DELIVERY SERVICE FOR DATA CENTERS 2641

VIII. DISCUSSION

In this paper, we focus on Datacast for RGDD communica-
tion within a data center (intra-DC). We also study whether the
Datacast protocol can be extended for inter data center (inter-
DC) RGDD communication. The biggest challenge here is
that the network latency for inter data center communication
can be large, which will result in high duplicate data ratio.
For example, our measurements show that the network latency
between data centers located in east coast and west coast of
the US is around 71ms. If we use the configuration in our
simulation (i.e., δ = 5Mbps, T = 1ms and R = 100Mbps), the
bound of duplicate data ratio will be as high as 78.3% based
on Theorem 2.

In order to address this issue, we can first select representa-
tive nodes in each data center and use existing high speed TCP
variants (e.g., CUBIC [18]) to deliver data from the source to
these nodes, and then start Datacast to do RGDD within each
data center. The detailed design and evaluation of this inter-
DC approach will be our future work.

IX. RELATED WORK

RGDD is an important traffic pattern, which has been
studied for decades. Existing solutions can be classified into
two categories.
Reliable IP multicast. The design space of reliable IP mul-
ticast has been nicely described in [12]. IP multicast has
scalability issues for maintaining a large number of group
states in the network. Adding reliability to IP multicast is also
hard due to the ACK implosion problem [13].

We compare Datacast with two representative reliable multi-
cast systems: pgm congestion control (pgmcc) [22] and Active
Reliable Multicast (ARM) [26]. Pgmcc needs to explicitly
track the slowest receiver for congestion control, and the
congestion control protocol needs to be run between the sender
and the slowest receiver. Datacast does not need to track
which receiver is the slowest. This is because Datacast uses
the duplicate interest packets as congestion signals, hence
congestion control becomes the local action of the sender.
ARM uses the active network concept and network devices
also cache packet, but the cached packets are used only for
re-transmission. Hence most likely the cached packets will
not be used even once. Furthermore, re-transmitted packets
are broadcasted along the whole sub-tree in ARM, whereas
they are delivered only to the needed receivers in Datacast.
End-host based overlay system. End-host based overlay
system overcomes the scalability issue by transmitting data
among peers. No group states are needed in network devices,
and reliability is easily achieved by directly using TCP. It is
widely used in the Internet. However, end-host based overlay
systems suffer from low bandwidth efficiency. For example,
the worst-case link stress of SplitStream can be tens [3],
and the average and worst-case link stresses of End System
Multicast (ESM) [19] are 1.9 and 9, respectively.

Recently, in the work of Orchestra [11], Cornet is pro-
posed, which is an optimized version of BitTorrent for DCNs.
Different from the distributed manner of Cornet, Datacast
is a centralized approach. Due to the fact that a data cen-
ter network is built and managed by a single organization,

centralized designs become possible (e.g., software-defined
networking [17]). Due to its centralized nature, Datacast is
able to utilize multiple Steiner trees for data delivery, and
achieve minimum finish time. Since the routing path from a
receiver to data source is predetermined, high cache utilization
is achieved. Furthermore, as we have demonstrated in the
paper, the intermediate device only needs to maintain small
cache per Steiner tree. All these benefits are hard, if not
totally impossible, to be achieved by distributed approaches
like Cornet.

X. CONCLUSION

In this paper, we have presented the design, analysis,
implementation and evaluation of Datacast for RGDD in
data centers. Datacast first calculates multiple edge-disjoint
Steiner trees with low time complexity, and then distributes
data among them. In each Steiner tree, by leveraging in-
network packet caching, Datacast uses a simple, but effective
congestion control algorithm to achieve scalability and high
bandwidth efficiency.

By building a fluid model, we show analytically that
the congestion control algorithm uses small cache size for
each group (e.g., 125KB), and results in few duplicate data
transmissions (e.g., 1.19%). Our analytical results are verified
by both simulations and experiments. We have implemented
Datacast using the ServerSwitch platform. When we use
Datacast to transmit 4GB data in our 1Gbps BCube(4, 1)
testbed with two edge-disjoint Steiner trees, the link stress
is only 1.01 and the finish time is 16.9s, which is close to the
16s lower bound.

APPENDIX

To build the model, we first analyze under what condition
a duplicate interest is received at the data source. Figure 10
shows a scenario with three caching switches between the
source and the slowest receiver. We assume that these switches
are “shared with” (i.e., also connected to) a number of fast
receivers. From the figure, we can see that the caches that are
farther to the slowest receiver will store newer data (shown
in the shadow areas), while the ones that are closer to the
slowest receiver will store older data. The reason is that data
packets are propagated from the source to the slowest receiver.
However, the interest is sent from the slowest receiver to the
source. If the last shared switch (i.e., switch 3) does not have
the corresponding data, others will not have it either. The
last shared switch is therefore very critical to cache misses.
We defined it as the critical caching node. When the critical
caching node cannot serve an interest, the interest will be sent
to the source as a duplicate interest. The critical caching node
does not change over time for a given transmission tree, since
it is determined by the structure of the transmission tree and
the positions of slow and fast receivers, i.e., the last shared
caching node of the slowest receiver and fast receivers.

After understanding when a duplicate interest is received at
the source, we build a fluid model to analyze the performance
of Datacast, based on the following assumptions: 1) The
(desired4) rate of the slowest receiver, R, does not change

4Here “desired” means that the rate of the slowest receiver is not con-
strained by the sending rate of the data source.

2642 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

source

switch 1

switch 2

switch 3

the slowest
receiver

the interest from the
slowest receiver

the interest from the
slowest receiver

cache

cache

cache

the interest from the
slowest receiver

cache

the interest from the
slowest receiver

newest data

newest data

newest data

newest data

d1 d2

d4 d3

Fig. 10. The critical caching node. d1, d2, d3 and d4 are the latencies.

TABLE II
NOTATIONS USED IN THE FLUID MODEL.

Notation Meaning
t The current time.

xs(t), xr(t) The data sequence positions of the data
source and the slowest receiver.

R The rate of the slowest receivers.
C The size of the cache (the content store).

MTU The size of a full Datacast data packet.
δ, T The two parameters of Datacast congestion

control, which are proposed in Section
V-B.

ta The start time of state 0.
tb The end time of state 0, and the start time

of state 1.
tc The end time of state 1.

Δx(t) xs(t− d1 − d2)− xr(t− d1 + d3)

over time. 2) The credit number w is large enough to saturate
the pipe. 3) The queue is large enough so that there is no
packet drop due to the buffer overflow of a queue. Table II
shows the notations that are used in the analysis. Our fluid
model can be described by the following equations:

x′′
s (t)= (1− p(t))

δ

T
− p(t)

x′
s(t)

2

x′
r(t− d1 − d4)

MTU
(2)

x′
r(t)=

{
R if xr(t) < xs(t−d2−d3)
max{R, x′

s(t− d2 − d3)} if xr(t) = xs(t−d2−d3)
(3)

p(t) = 1{xs(t−d1−d2)−xr(t−d1+d3)>C+w·MTU−(d3+d4)R}
(4)

In this model, Equation (3) captures the slowest receiver’s

(actual) rate. At time t, the slowest receiver wants data xr(t),
and the newest data it can get from the data source is xs(t−
d2 − d3). When xr(t) < xs(t− d2 − d3), it means that there
are packets in the queues between the source and the slowest
receiver, so the slowest receiver’s rate is R. When xr(t) =
xs(t−d2−d3), the queues between the source and the slowest
receiver are empty, so the slowest receiver is constrained by
both the source’s rate at time t−d2−d3 and R. Equation (4) is
an indicator function. p(t) = 1 when the data source receives
a duplicate interest, otherwise p(t) = 0. If the data source
receives a duplicate interest at time t, the interest will not be
served by the critical caching node at time t− d1. When the
slowest receiver is retrieving data from the critical caching
node, the data in the queues between the critical caching node
and the slowest receiver are w ·MTU − (d3 + d4)R. At time
t−d1, the interest from the slowest receiver is retrieving xr(t−
d1+d3)+w·MTU−(d3+d4)R from the critical caching node,
while the newest data is xs(t − d1 − d2). So if the distance
between them is larger than C, p(t) = 1. Otherwise, p(t) = 0.
Equation (2) models the rate control at the data source. δ

T
captures a constant rate increase δ in every time period T
if there is no duplicate interest. The second term is the rate
decrease when duplicate interests are received (i.e., p(t) = 1).
When p(t) = 1, the data source receives one duplicate interest
from the slowest receiver in every time period MTU

x′
r(t−d1−d4)

,
and decreases its sending rate by half. The decreasing rate
therefore is x′

s(t)
2 / MTU

x′
r(t−d1−d4)

=
x′
s(t)
2

x′
r(t−d1−d4)

MTU .

We say the system is in state 0 when p(t) = 0, in state 1
when p(t) = 1. It is easy to see that the system will oscillate
between the two states, since x′′

s (t) > 0 in state 0, and
x′′
s (t) < 0 in state 1. We call it a cycle from the start of state

CAO et al.: DATACAST: A SCALABLE AND EFFICIENT RELIABLE GROUP DATA DELIVERY SERVICE FOR DATA CENTERS 2643

t

p(t)

. . .

a cycle

0
ta tb tc

state 0

state 1

1

Fig. 11. An illustration of the state changes in Datacast.

0 to the end of state 1. Figure 11 gives us an illustration of
the state changes in Datacast.

Proof of Theorem 1:
Proof: We first prove that if Inequality (1) is true, the rate

of the slowest receiver is not reduced, i.e., x′
r(t) = R. To prove

that, we first prove Δx(t) > 0. It is easy to see it holds in state
1, since Δx(t) > C +w ·MTU − (d3 + d4)R in state 1, and
w is enough to saturate the pipe, i.e., w ·MTU ≥ RTTm ·R,
where RTTm = d1 + d2 + d3 + d4. Next, we prove that it is
also true in state 0.

In state 0, when t ∈ (ta, ta + d1 + d2], we have

Δx(t) > xs(ta − d1 − d2)− xr(ta − d1 + d3)− (t− ta)R

≥ C + (w ·MTU − (d3 + d4)R)− (d1 + d2)R

= C + (w ·MTU −RTTm ·R) >
R2T

2δ

When t ∈ (ta + d1 + d2, tb), we have

Δx(t) =

∫ t

ta+d1+d2

Δx′(t)dt+Δx(ta + d1 + d2)

>

∫ t−d1−d2

ta

(
x′
s(t)−R

)
dt+

T

2δ
R2

=
δ

2T
(t− d1 − d2 − ta)

2

+ (x′
s(ta)−R)(t− d1 − d2 − ta) +

T

2δ
R2

≥− T

2δ
(R− x′

s(ta))
2 +

T

2δ
R2 > 0

So Δx(t) > 0 is also true in state 0. Putting Δx(t) > 0 into
(3), we get x′

r(t) = R, which means that the slowest receiver’s
rate is not slowed down. Actually, it can be further proved that
the average sending rate of the data source will converge to R
(which is omitted due to the space limitation), i.e., Datacast
works at the full rate when Inequality (1) is satisfied.

Theorem 1 provides a sufficient condition to guarantee
x′
r(t) = R. When C is not large enough, x′

r(t) can
possibly be constrained by x′

s(t − d2 − d3) in state 0.
However, x′

s(t − d2 − d3) will grow at a constant speed, δ
T .

xs(t− d2 − d3) will soon be greater than xr(t), which means
that the slowest receiver’s rate is back to R. Even when
C is not large enough, the system will experience graceful
performance degradation instead of abrupt performance
changes, as we have observed in the simulations and
experiments.

Proof of Theorem 2:
Proof: The duplicate ratio can be calculated as

(tc−tb)R
xs(tc)−xs(ta)

. (tc − tb)R is the amount of duplicate data that
the slowest receiver requested in state 1, while xs(tc)−xs(ta)
is the amount of new data sent from the source in the whole
cycle. On entering the stable state, in each cycle, the data
source and the slowest receiver move forward by the same
distance, i.e., xs(tc) − xs(ta) = xr(tc) − xr(ta). Since
x′
r(t) = R, xr(tc) − xr(ta) = (tc − ta)R. The duplicate

data ratio can be simplified as tc−tb
tc−ta

. To calculate it, we first
derive the links between the two states. At time ta, tb and tc,
we have

x′
s(ta) = x′

s(tc)

x′
s(tb) = x′

s(ta) +
δ

T
(tb − ta)

x′
s(tc) = x′

s(tb)e
− R

2MTU (tc−tb)

At time tb and tc, we have Δx(tb) = Δx(tc) = C + w ·
MTU − (d3 + d4)R. So we have xs(tc − d1 − d2)− xs(tb −
d1−d2) = xr(tc−d1+d3)−xr(tb−d1+d3). The right item is
(tc− tb)R, since x′

r(t) = R. The left item can be divided into
two parts, xs(tc−d1−d2)−xs(tb) and xs(tb)−xs(tb−d1−d2).
We calculate them separately, and then we get

(tc − tb)R =x′
s(tb)(d1 + d2)− δ

2T
(d1 + d2)

2

+
2MTU

R
x′
s(tb)(1 − e−

R
2MTU (tc−tb−d1−d2))

(5)

From Equation (5), we can derive:

(tc − tb)R

≤ 2MTU

R
x′
s(ta)(e

R
2MTU (tc−tb) − e

R
2MTU (d1+d2))

+ x′
s(tb)(d1 + d2)

≤ 2MTU

R
x′
s(ta)(e

R
2MTU (tc−tb) − 1− R

2MTU
(d1 + d2))

+ x′
s(tb)(d1 + d2)

= (x′
s(tb)− x′

s(ta))(d1 + d2) +
2MTU

R
(x′

s(tb)− x′
s(ta))

=
δ

T
(
2MTU

R
+ d1 + d2)(tb − ta) (6)

From (6), we can finally derive the bound of the duplicate
data ratio

tc − tb
tc − ta

≤
δ
T

δ
T + R

2MTU
R +d1+d2

≤
δ
T

δ
T + R

2MTU
R +RTTm

the equal sign is true when RTTm = 0.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
Data Center Network Architecture. In SIGCOMM, 2008.

[2] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan Seshan, and
Scott Shenker. Packet Caches on Routers: The Implications of Universal
Redundant Traffic Elimination. In SIGCOMM, 2008.

[3] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. SplitStream: High-Bandwidth
Multicast in Cooperative Environments. In SOSP, 2003.

2644 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

[4] Bram Cohen. Incentives Build Robustness in BitTorrent. In Workshop
on Economics of Peer-to-Peer Systems, 2003.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, 2004.

[6] J. Edmonds. Edge-disjoint branchings. In R. Rustin, editor, Combina-
torial Algorithms, pages 91–96. Algorithmics Press, New York, 1972.

[7] C. Guo et al. BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers. In SIGCOMM, 2009.

[8] Guohan Lu et al. ServerSwitch: A Programmable and High Performance
Platform for Data Center Networks. In NSDI, 2011.

[9] Hussam Abu-Libdeh et al. Symbiotic Routing in Future Data Centers.
In SIGCOMM, 2010.

[10] J. Cao et al. Datacast: A Scalable and Efficient Group Data Delivery
Service for Data Centers. In CoNEXT, 2012.

[11] M. Chowdhury et al. Managing Data Transfers in Computer Clusters
with Orchestra. In SIGCOMM, 2011.

[12] M. Handley et al. The Reliable Multicast Design Space for Bulk Data
Transfer, Aug 2000. RFC2887.

[13] Sally Floyd et al. A Reliable Multicast Framework for Light-weight
Sessions and Application Level Framing. IEEE Trans. Netw., Dec 1997.

[14] Van Jacobson et al. Networking Named Content. In CoNEXT, 2009.
[15] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. In

SOSP, 2003.
[16] R. L. Graham and L. R. Foulds. Unlikelihood That Minimal Phylogenies

for a Realistic Biological Study Can Be Constructed in Reasonable
Computational Time. Mathematical Bioscience, 1982.

[17] K. Greene. Special reports 10 emerging tech-
nologies 2009. MIT Technology Review, 2009.
http://www.technologyreview.com/biotech/22120/.

[18] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly
high-speed tcp variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July
2008.

[19] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A
Case for End System Multicast. IEEE J. Sel. Areas Commun., Oct 2002.

[20] M. Isard, M. Budiu, and Y. Yu. Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks. In EuroSys, 2007.

[21] Force10 networks. Force10 s7000. www.force10networks.com.
[22] Luigi Rizzo. pgmcc: a TCP-friendly Single Rate Multicast Congestion

Control Scheme. In SIGCOMM, 2000.
[23] Shyue-Ming Tang, Jinn-Shyong Yang, Yue-Li Wang, and Jou-Ming

Chang. Independent Spanning Trees on Multidimensional Torus Net-
works. IEEE Trans. Computers, Jan 2010.

[24] David L. Tennenhouse and David J. Wetherall. Towards an Active
Network Architecture. SIGCOMM CCR, Apr 1996.

[25] Po Tong and E. L. Lawler. A Fast Algorithm for Finding Edge-disjoint
Branchings. Information Processing Letters, Aug 1983.

[26] Li wei H. Lehman, Stephen J. Garland, and David L. Tennenhouse.
Active Reliable Multicast. In INFOCOM, 1998.

[27] J. Widmer and M. Handley. TCP-Friendly Multicast Congestion Control
(TFMCC): Protocol Specification, Auguest 2006. RFC 4654.

Jiaxin Cao received the bachelor degree and Ph.D.
degree from University of Science and Technology
of China in 2008 and 2013, respectively. During his
Ph.D. program, he worked as an research intern in
the W&N group of Microsoft Research Asia. His
major research interests are data center networking
and software defined networking. He is a Research
Software Development Engineer in Microsoft now.

Chuanxiong Guo is a Principal Development Lead
in the Windows Azure Group of Microsoft. Before
that, he was a Senior Researcher in the Wireless
and Networking Group of Microsoft Research Asia
(MSRA). He received his Ph.D. degree from the
Institute of Communications Engineering in Nan-
jing China. His research interests include networked
systems design and analysis, network security, data
centric networking, networking support for operat-
ing systems. He is currently working on data center
networking (DCN) and Cloud Computing.

Guohan Lu received the B.S. degree in mechanical
engineering, M.S. and PhD degrees in electronic
engineering, both from Tsinghua University, China.
He is currently an Associate Researcher in Microsoft
Research Asia. His research interests are on network
measurement and monitoring, network security and
data center networks.

Yongqiang Xiong is now with Wireless and Net-
working Group at Microsoft Research Asia as a
researcher. Dr. Xiong received his B.S., M.S., and
Ph.D degrees from Tsinghua University, Beijing,
China in 1996, 1998 and 2001, respectively, all
in computer science. His research interests include
data center and peer-to-peer networking, routing
protocols for both MANETs and overlay networks,
and network security. He has published over 40
papers, and served as TPC member or reviewers
for the international key conferences and leading

journals in the areas of wireless and networking. Dr. Xiong is member of
IEEE.

Yixin Zheng received his BS degree from Tsinghua
University, China, in 2012. He is currently an MS
candidate in the Electronic Engineering Department
at Tsinghua University. His research interests are in
networking systems and data mining applications,
with a focus on communication protocols and real-
time data mining service in sensor networks.

CAO et al.: DATACAST: A SCALABLE AND EFFICIENT RELIABLE GROUP DATA DELIVERY SERVICE FOR DATA CENTERS 2645

Yongguang Zhang is a Principal Researcher at Mi-
crosoft Research Asia, where he leads the Wireless
& Networking research group. He received his Ph.D.
in computer science from Purdue University in 1994.
From 1994 to 2006 he was a research scientist at
HRL Labs (Malibu, California) where he led vari-
ous research efforts in internetworking techniques,
system developments, and security mechanisms for
satellite networks, ad-hoc networks, and 3G wireless
systems, including as a co-PI in a DARPA Next
Generation Internet project and as technical leads

in five other DARPA-funded wireless network research projects. From 2001
to 2003, he was also an adjunct assistant professor of Computer Science at the
University of Texas at Austin. Yongguang Zhang’s current interests include
mobile systems and wireless networking. He has published over 50 technical
papers and one book, including top conferences and journals in his fields
(Sigcomm, NSDI, MobiCom, MobiSys, ToN, etc.). He recently won a string
of Best Paper Awards (NSDI’09, CoNEXT’10, and NSDI’11) as well as 5 Best
Demo Awards in a roll (MobiSys’07, SenSys’07, MobiSys’08, NSDI’09, and
SIGCOMM’10). He is an Associate Editor for IEEE transactions on Mobile
Computing, was a guest editor in an ACM MONET Journal, and has organized
and chaired/co-chaired several international conferences, workshops, and an
IETF working group. He was a General Co-Chair for ACM MobiCom’09.

Yibo Zhu is a second year PhD student in De-
partment of Computer Science, University of Cal-
ifornia, Santa Barbara. He is working at Sand
Lab co-advised by Prof. Ben Y. Zhao and Prof.
Heather Zheng. Yibo’s research interests include
data center and wireless networks. He co-authored
several papers published in top networking con-
ferences such as ACM SIGCOMM’12, WWW’12
and CoNEXT’12. Yibo worked as an intern in Mi-
crosoft Research, Redmond in 2013 and Microsoft
Research, Asia in 2011.

Chen Chen is a second-year Ph.D student at Uni-
versity of Pennsylvania. His research interest lies at
clouding, software-defined network(SDN), security
and formal verification. His current work involves
virtualization in data center network(DCN) and for-
mal verification on secure routing protocols.

Ye Tian received the bachelor’s degree in electronic
engineering and the master’s degree in computer
science from the University of Science and Tech-
nology of China (USTC), in July 2001 and 2004,
respectively. He received the PhD degree from the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong in December
2007. He is an associate professor at the School
of Computer Science and Technology, USTC. He
joined USTC in August 2008. His research interests
include Internet and network measurement, peer-to-

peer networks, online social networks, and multimedia networks. He is a
member of the IEEE, and a senior member of the China Computer Federation
(CCF). He is currently serving as an associate editor for Springer Frontiers
of Computer Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

