
Datacast: A Scalable and Efficient Reliable Group Data
Delivery Service for Data Centers

Jiaxin Cao1∗, Chuanxiong Guo2, Guohan Lu2, Yongqiang Xiong2, Yixin Zheng3∗,
Yongguang Zhang2, Yibo Zhu4∗, Chen Chen5

University of Science and Technology of China1, Microsoft Research Asia2,
Tsinghua University3, University of California, Santa Barbara4, University of Pennsylvania5

caojx@mail.ustc.edu.cn1, {chguo, lguohan, yqx, yqz}@microsoft.com2

zhengyx12@mails.tsinghua.edu.cn3, yibo@cs.ucsb.edu4, chenche@seas.upenn.edu5

ABSTRACT
Reliable Group Data Delivery (RGDD) is a pervasive traffic
pattern in data centers. In an RGDD group, a sender needs
to reliably deliver a copy of data to all the receivers. Exist-
ing solutions either do not scale due to the large number of
RGDD groups (e.g., IP multicast) or cannot efficiently use
network bandwidth (e.g., end-host overlays).

Motivated by recent advances on data center network topol-
ogy designs (multiple edge-disjoint Steiner trees for RGDD)
and innovations on network devices (practical in-network
packet caching), we propose Datacast for RGDD. Datacast
explores two design spaces: 1) Datacast uses multiple edge-
disjoint Steiner trees for data delivery acceleration. 2) Data-
cast leverages in-network packet caching and introduces a
simple soft-state based congestion control algorithm to ad-
dress the scalability and efficiency issues of RGDD.

Our analysis reveals that Datacast congestion control works
well with small cache sizes (e.g., 125KB) and causes few du-
plicate data transmissions (e.g., 1.19%). Both simulations
and experiments confirm our theoretical analysis. We also
use experiments to compare the performance of Datacast
and BitTorrent. In a BCube(4, 1) with 1Gbps links, we use
both Datacast and BitTorrent to transmit 4GB data. The
link stress of Datacast is 1.01, while it is 1.39 for BitTorrent.
By using two Steiner trees, Datacast finishes the transmis-
sion in 16.9s, while BitTorrent uses 52s.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Distributed applications

∗The work was performed while Jiaxin Cao, Yixin Zheng,
Yibo Zhu and Chen Chen were research interns at Microsoft
Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Co-NEXT’12, December 10-13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

General Terms
Algorithms, Performance, Theory

Keywords
Multicast, congestion control, content distribution

1. INTRODUCTION
Reliable Group Data Delivery (RGDD) is widely used in

cloud services (e.g., GFS [15] and MapReduce [5]) and ap-
plications (e.g., social networking, Search, scientific comput-
ing). In RGDD, we have a group which contains one data
source and a set of receivers. We need to reliably deliver the
same copy of bulk data from the source to all the receivers.

Existing solutions for RGDD can be classified into two
categories: 1) Reliable IP multicast. IP multicast suffers
from scalability issues, since it is hard to manage a large
number of group states in the network. Adding reliability
is also challenging, due to the ACK implosion problem [13].
2) End-host based overlays. Overlays are scalable, since de-
vices in the network do not maintain group states. Relia-
bility is easily achieved by using TCP in overlays. However,
overlays do not use network bandwidth efficiently. The same
copy of data may traverse the same link several times, re-
sulting high link stress. For example, ESM [18] reported
that the average and worst-case link stresses are 1.9 and 9,
respectively.

Motivated by the recent progresses on data center network
(DCN) topologies and network devices, we explore new op-
portunities in supporting RGDD for DCN: 1) Recently pro-
posed DCN topologies have multiple edge-disjoint Steiner
trees, which has not been well studied before. These multiple
Steiner trees may enable full utilization of DCN bandwidth.
2) There is a clear technical trend that network devices are
providing powerful packet processing abilities by integrat-
ing CPUs and large memory. This makes in-network packet
caching practical. By leveraging in-network packet caching,
we can address the scalability and bandwidth efficiency is-
sues of RGDD.

However, it is challenging to take advantage of these op-
portunities. It has been proved that even calculating a single
Steiner tree is NP-hard [16]. In RGDD, we have to calcu-
late multiple Steiner trees within a short time, which makes
the problem even harder. Although network devices are be-
coming capable of in-network packet caching, the resource

37

is not unlimited. We need to use as small caches as possible
for each group to maximize the number of simultaneously
supported groups. At the same time, we need to increase
bandwidth efficiency by reducing duplicate packets trans-
mitted in the network.

In this paper, we design Datacast to address the above
challenges. Leveraging the properties of the DCN topolo-
gies, Datacast introduces an efficient algorithm to calculate
multiple edge-disjoint Steiner trees, and then distributes da-
ta among them. In each Steiner tree, Datacast leverages the
concept of CCN [14]. To help Datacast achieve high band-
width efficiency with small cache size in intermediate nodes,
we design a rate-based congestion control algorithm, which
follows the classical Additive Increase and Multiplicative De-
crease (AIMD) approach. Datacast congestion control lever-
ages a key observation: the receiving of a duplicate packet
request at the source can be interpreted as a congestion sig-
nal. Different from previous work (e.g., TFMCC [26] and
pgmcc [21]), which uses explicit information exchanges be-
tween the source and receivers, Datacast is much simpler.
To understand the performance of Datacast, we build a flu-
id model. By analyzing the model, we prove that Datacast
works at the full rate when the cache size is greater than a
small threshold (e.g., 125KB), and also derive the ratio of
duplicate data sent by the data source (e.g., 1.19%). We
have built Datacast in NS3, and also have implemented it
with the ServerSwitch [8] platform. Simulations and ex-
periments verify our theoretical results, which suggest that
Datacast achieves both scalability and high bandwidth effi-
ciency.

This paper makes the following contributions:

• We design a simple and efficient multicast congestion
control algorithm, and build a fluid model to under-
stand its properties.

• We propose a low time-complexity algorithm for mul-
tiple edge-disjoint Steiner trees calculation.

• We implement Datacast with the ServerSwitch plat-
form, and validate its performance.

The rest of this paper is organized as follows. In Section 2,
we introduce the background. We briefly overview Datacast
design in Section 3. We design the Steiner trees algorithm
in Section 4, and build the Datacast transport protocol in
Section 5. We present simulation results in Section 6, imple-
mentation and experiments in Section 7. Finally, we discuss
the related work and conclude the paper in Section 8 and 9,
respectively.

2. BACKGROUND

2.1 Reliable group data delivery
In data center applications and services, Reliable Group

Data Delivery (RGDD) is a pervasive traffic pattern. The
problem of RGDD is, given a data source, Src, and a set
of receivers, R1, R2, · · · , Rn, how to reliably transmit bulk
data from Src to all the receivers. A good RGDD design
should be scalable and achieve high bandwidth efficiency.
The following cases are typical RGDD scenarios.

Case 1: In data centers, servers are typically organized as
physical clusters. During bootstrapping or OS upgrading,
the same copy of the OS image needs to be transferred to

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Group size (the number of servers)

Group size distribution

(a) The group size distribution in a large data center.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Data size (MB)

Data traffic volume distribution

(b) The traffic volume distribution for a large distributed
execution engine.

Figure 1: RGDD groups and traffics in data centers.

all the servers in the same cluster. A physical cluster is
further divided into sub-clusters of different sizes. A sub-
cluster is assigned to a service. All the servers in the same
sub-cluster may need to run the same set of applications.
We need to distribute the same set of program binaries and
configuration data to all the servers in the sub-cluster.

Case 2: In distributed file systems, e.g., GFS [15], a chunk
of data is replicated to several (typically three) servers to
improve reliability. The sender and receivers form a small
replication group. A distributed file system may contain
tens of Peta bytes using tens of thousands machines. Hence
the number of replication groups is huge. In distributed
execution engine, e.g., Dryad [19], a copy of data may need
to be distributed to many servers for JOIN operations.

Case 3: In Amazon EC2 or Windows AZure, a tenant
may create a set of virtual machines. These virtual ma-
chines form an isolated computing environment dedicated
to that tenant. When setting up the virtual machines, cus-
tomized virtual machine OSes and application images need
be delivered to all the physical servers that host these virtual
machines.

Figure 1(a) and 1(b) show the group size and traffic vol-
ume distributions for a RGDD service in a large production
data center. We use these two figures to illustrate the chal-
lenges in supporting RGDD.
The system should be scalable. As we have mentioned
in the above scenarios, we need to support a large number
of RGDD groups in large data centers. Figure 1(a) further
shows that the group size varies from several servers to thou-
sands of servers and even more. The large number of groups
and the varying group sizes pose scalability challenges, since
maintaining a large number of group states in the network
is hard (as demonstrated by IP multicast).
Bandwidth should be efficiently and fully used. Fig-
ure 1(b) shows the traffic volume distribution for group com-
munications. It shows that the groups transmitting more

38

than 550MB data contribute 99% RGDD data traffic vol-
ume. Due to the large number of groups and the large data
sizes, RGDD contributes a significant amount of traffic. This
requires that RGDD uses network bandwidth efficiently. On
the other hand, the new DCN topologies (e.g., BCube [7]
and CamCube [9]) provide high network capacity with mul-
tiple data delivery trees. An RGDD design should take full
advantage of these new network topologies to speedup data
delivery.

In what follows, we introduce recent technology progresses
on DCN topologies and network devices, which we leverage
to address the above challenges.

2.2 New opportunities
Multiple edge-disjoint Steiner trees. Different from the
Internet, DCNs are owned and operated by a single organi-
zation. As a result, DCN topologies are known in advance,
and we can assume that there is a centralized controller
to manage and monitor the whole DCN. Leveraging such
information, we can improve RGDD efficiency by building
efficient data delivery trees. Furthermore, several recently
proposed DCNs (e.g., BCube [7] and CamCube [9]) have
multiple edge-disjoint Steiner trees which can be used to
further accelerate RGDD.
In-network packet caching becomes practical. Re-
cently, we observe a clear technical trend for network de-
vices (switches and routers). First, powerful CPUs and
large memory are being included in network devices. The
new generation of devices are equipped with multi-core X64
CPUs and several GB memory, e.g., Arista 7504 has 2 AMD
Athlon X64 Dual-Core CPUs and 4GB DRAM. Second, the
merchant switching ASIC, CPU and DRAM can be connect-
ed together by using the state-of-the-art PCI-E interface, as
demonstrated by research prototype (e.g., ServerSwitch [8])
and products (e.g., Force10 S7000 [20]). With the new abil-
ities of network devices, many in-network packet processing
operations (e.g., in-network packet caching) become practi-
cal. In this paper, we explore in-network packet caching.
By turning hard-states for group managements in interme-
diate network devices into soft-states based packet caching,
we address the scalability and efficiency issues of RGDD.

However, technical challenges exist to take advantage of
these opportunities. First, given the network topology, cal-
culating one single Steiner tree with minimal cost is NP-
hard [16]. What is more challenging is that we have to cal-
culate multiple Steiner trees, and the calculation has to be
fast enough (otherwise it may be more time consuming than
data dissemination). Second, we have a large number of
RGDD groups to support and have limited resources in in-
termediate network devices. How to use as few resources as
possible to support more RGDD groups is a challenge.

We design Datacast to explore the new design spaces pro-
vided by the new opportunities. The design goal of Datacast
is to achieve scalability and also high bandwidth efficiency.
In what follows, we first introduce the architecture of Data-
cast, then describe how Datacast addresses the above tech-
nical challenges.

3. DATACAST OVERVIEW
Figure 2 shows the architecture of Datacast. There are

five components in Datacast: Fabric Manager, Master, da-
ta source, receivers, and intermediate devices (IMD). Fabric
Manager is a centralized controller, which maintains a glob-

Fabric

Manager

Master i

Master j
Src

R1 R2

IMD

Src

R1 R2 R3 R4

RGDD Group i1

RGDD Group i2

RGDD Group in

Network

Topology

Figure 2: The architecture of Datacast. There are
five major components in Datacast, Fabric Manag-
er, Master, data source (Src), receivers (Ri), and
intermediate devices (IMD).

al view of the network topology. When we need to start
an RGDD group, we first start a Master. The Master will
get topology information from Fabric Manager and then cal-
culate multiple edge-disjoint Steiner trees. After that, the
Master will send the tree information and other signalling
messages (e.g., which file to fetch) to receivers via a sig-
nalling protocol. Then data transmission begins. When
transmitting data, the data source will run our congestion
control algorithm. During the whole process, intermediate
devices do not interact with Fabric Manager, Master, the
source or any receivers. These devices just cache and ser-
vice data based on their local decisions.

To deliver signalling messages efficiently, we have built a
signalling protocol, which uses a hierarchical transmission
tree structure (generated by the Breadth First Search al-
gorithm) to transmit signalling messages. It encodes the
transmission tree into the message. Each node in the trans-
mission tree decodes the signalling message, splits the tree
into subtrees and forwards each subtree to its correspond-
ing children. When the signalling messages reach the leaves,
ACKs are generated and aggregated along the paths from
leaves to the root. Using the message split and aggregation,
signalling messages can be reliably and efficiently delivered.

In large data centers, failures are inevitable. Different
from BitTorrent [4], which achieves fault tolerant in a dis-
tributed way, Datacast handles network failures in a cen-
tralized manner. In Datacast, Fabric Manager monitors the
network status in real time. When network failures happen,
Fabric Manager will send the new topology information to
all the Masters, and each Master will recalculate the Steiner
trees and notify the affected receivers accordingly. Due to
space limitation, we omit the details of the signalling proto-
col and the failure handling details, but we do use real im-
plementation and experiment to evaluate their performance
in Section 7.2.3.

In the following sections, we will present two key designs
of Datacast: the fast calculation of multiple edge-disjoint
Steiner trees, and the Datacast congestion control protocol
which helps Datacast achieve scalability and high bandwidth
efficiency.

39

4. MULTIPLE EDGE-DISJOINT STEINER
TREES IN DCN

In this section, we first present the algorithm on multi-
ple Steiner trees calculation, then discuss how to use these
multiple Steiner trees for data delivery.

4.1 Calculation of multiple Steiner trees
It has been known that using multiple Steiner trees can

improve the transmission efficiency [3]. However, construct-
ing multiple edge-disjoint Steiner trees in a given (data cen-
ter) topology has not been investigated before. The problem
is, for a given network G(V,E), where V is the set of nodes
and E is the set of edges, and a group D containing one
source and a set of receivers, how to calculate the maximum
number of edge-disjoint Steiner trees. This is the well known
multiple edge-disjoint Steiner trees problem, which has been
studied for decades. Unfortunately, calculating Steiner trees
is NP-hard [16].

We therefore turn our attention to heuristic algorithms.
One reasonable approach is as follows. There are algorithms
for calculating multiple edge-disjoint spanning trees (e.g.,
[6]). We can first find the multiple edge-disjoint spanning
trees, and then prune the unneeded edges and nodes to get
the Steiner trees.

However, the generic multiple spanning trees algorithms
do not work well for our case. First, the time complexity
of calculating the spanning trees is high. The best algo-
rithm we know is Po’s algorithm [24]. Its time complexity
is O((k′)2|V ||E|), which is too high for RGDD (we will see
that in Section 6.1.1). Second, the depths of the spanning
trees generated by the generic algorithm can be very large.
For example, in the previous example for BCube, the av-
erage and worst-case depths of the trees can be 1000+ and
2000+ hops, whereas the network diameter is only 8.

Fortunately, we observe that DCNs, e.g., Fattree, BCube
and multi-dimensional Torus, are well structured topologies.
These topologies are also well studied. Multiple spanning
trees construction algorithms for these topologies are already
known (e.g., [7, 22]), and these spanning trees have good
qualities, e.g., small tree depths. However, network failures
(e.g., link failures) are common in real networks. With-
out reorganizing the spanning trees, network failures could
possibly break all the trees generated by these algorithms.
In order to solve the problem, we propose a multiple edge-
disjoint Steiner trees algorithm, which is shown in Figure 3.
The algorithm contains three parts.

The first part of this algorithm uses specific algorithms to
construct spanning trees for specific DCN topologies (with-
out considering network failures). For example, in Fattree [1],
Breadth First Search (BFS) can generate a spanning tree,
and the spanning trees algorithms for BCube and Torus are
proposed in [7] and [22]. The time complexity of these algo-
rithms are O(k|V |), where k is the number of edge disjoint
Spanning trees. Please see [10] for the algorithm details.

The second part prunes the links that are not used in data
transmissions. To prune the spanning tree, we calculate the
paths from the receivers to the source in the spanning tree.
Then the set of links involved in the paths form a Steiner
tree. The time complexity of pruning all the spanning trees
is O(|E|), since each link will only be traversed once.

The third part tries to repair the broken trees affected by
link failures. The core idea of repairing a Steiner tree is:
we first release the broken tree, and then try to use BFS to

// G is the DCN network, D is the Datacast group.
CalcSteinerTrees(G, D):

// 1) construct multiple spanning trees
SPTSet = G.CalcSpanningTrees(D.src);

// 2) prune each spanning trees
foreach (SPT in SPTSet)

SteinerTree = Prune(SPT, D);
SteinerTreeSet.add(SteinerTree);

// 3) repair Steiner trees if they are broken
foreach (SteinerTree in SteinerTreeSet)

if (SteinerTree has broken links)
if (RepairSteinerTree(SteinerTree, G) == false)

Release(SteinerTree);
SteinerTreeSet.remove(SteinerTree);

return SteinerTreeSet;

Figure 3: The algorithm for multiple edge-disjoint
Steiner trees calculation.

traverse the free and active links to construct a new Steiner
tree. The repairing algorithm applies this idea to the broken
trees one by one as shown in Figure 3. Although this idea is
simple, it has the following benefits: 1) It guarantees at least
one Steiner tree if all the receivers are connected. 2) The
depth of the tree is locally minimized due to the use of BFS.
The time complexity of repairing all the trees is O(k′|E|),
where k′ is the number of Steiner trees to be repaired.

Our multiple Steiner trees calculation algorithm is fast.
The time complexity of the algorithm is O(k|V |) +O(|E|) +
O(k′|E|), which contains the construction and pruning of
spanning trees and the repairing of Steiner trees.

Our algorithm has good performance (in terms of the
number of Steiner trees) and is fault tolerant. Even if there
are network failures, we can still create a number of Steiner
trees. We have derived an upper bound of the number of
Steiner trees, and found that the number of Steiner trees
generated by our algorithm is very close to the upper bound
(details will be shown in Section 6.1.2). For Fattree, al-
though it has only one Steiner tree, our algorithm guaran-
tees that it always generates a Steiner tree as long as the
network is connected.

In this paper, we evaluate our algorithm on Fattree, BCube
and Torus. However, our algorithm is not constrained to
these topologies. To use our algorithm for other topolo-
gy, we only need to change the spanning trees construction
part. Since data center networks are well structured and
have been studied extensively, the spanning tree algorithms
have already been proposed (e.g., HyperCube [27]), it is easy
to adapt our algorithm for these topologies.

4.2 Data distribution among multiple Steiner
trees

To use multiple Steiner trees for data delivery, we first
split the data into blocks, and then feed each tree with a
block. When a Steiner tree finishes transmitting the last
data packet of the current block, we know that the trans-
mission of the current block is finished. Then the data source
will use our signalling protocol to deliver the information of
the next block to be transferred, e.g., the name of the block,
to the receivers. After that the Steiner tree will start to
transmit the next block. This process repeats until all the
blocks are successfully delivered.

40

5. DATACAST TRANSPORT PROTOCOL
In this section, we introduce in-network packet caching in

Datacast, present the Datacast congestion control algorithm
and discuss the cache management mechanism. By building
a fluid model for the congestion control, we also derive the
condition under which Datacast operates at the full rate,
and its efficiency.

5.1 Data transmission with in-network caching
In-network packet caching has been used in many previous

works, including Active Networking [23], RE (redundancy
elimination) [2], and CCN [14]. Datacast is built on top of
CCN. In CCN, every single packet is assigned a unique, hi-
erarchical name. A user needs to explicitly send an interest
packet to ask for the data packet. Any intermediate de-
vice that has the requested data along the routing path can
respond with the data packet. The network devices along
the reverse routing path then cache the data packet in their
content stores for later uses. CCN therefore turns group
communication into in-network packet caching.

Datacast improves CCN as follows: 1) Datacast intro-
duces a congestion control algorithm to achieve stability and
high bandwidth efficiency. 2) Datacast only caches data
packets at branching nodes, which helps the whole system
save memory. 3) Datacast uses source routing to enforce
routing paths, so no Forwarding Information Base (FIB)
management is needed at the intermediate devices.

Figure 4 shows an example of data delivery with in-network
caching supports. The green node, 00, is the data source.
The blue nodes, 12, 13, 21 and 33, are the receivers. The
two Steiner trees calculated by the algorithm proposed in
Section 4 are shown in solid lines and dashed lines sepa-
rately. The transmission in Steiner tree A could take the
following steps: 1) Node 21 sends an interest packet to node
00 through the path {21, 11, 01, 00}. Node 00 sends the
requested data back along the reverse path. Then the data
packet is cached at the branch node 01. 2) Node 12 sends
an interest packet along the path {12, 02, 01, 00} asking
for the same data. When the interest arrives at node 01,
node 01 finds that it has already cached the data packet, so
it terminates the interest and sends back the data packet.
Then the data are cached at node 02 and 12. 3) Node 13
sends its interest along the path {13, 12, 02, 01, 00}. Then
the data is replied by node 12, since it has cached the data.
4) Node 33 sends its interest along the path {33, 32, 02, 01,
00}, and node 02 returns the data packet.

Note that the execution order of the four steps in the
example is not important. They can be executed in an arbi-
trary order, and still achieves the same result. The reason is
that, in the end, all the steps together cover the same Steiner
tree by traversing every link of the tree exactly once.

The benefits of in-network caching are two-fold: 1) By
leveraging in-network caching, the network devices do not
need to maintain hard group states. The intermediate de-
vices do not even know that they are part of a group com-
munication session. Hence Datacast is inherently scalable.
2) In-network caching makes reliable transmission easier to
achieve. When a packet is dropped, the receiver will resend
an interest packet requesting the same data packet (after
timeout). This interest packet could be served by the near-
est node that caches the requested data packet. The sender
does not even necessarily know that there are packet losses

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Steiner Tree A

Steiner Tree B

Figure 4: An illustration of in-network caching. The
green node, 00, is the data source, while the blue
ones, 12, 13, 21 and 33, are the receivers. Two
Steiner trees are calculated, shown in the solid and
dashed lines, respectively.

in the network, so the ACK/NAK implosion problem does
not occur.

5.2 Datacast congestion control algorithm
Datacast congestion control algorithm works for a single

Steiner tree. It is one of the most important part of Data-
cast to realize its design goal, i.e., to achieve scalability and
high bandwidth efficiency. Since Datacast turns hard group
states into soft-state based packet caching, it is natural to
require that the cache size in intermediate devices for each
group is as small as possible (so as to support more groups),
and the rates of receivers are synchronized (so as to improve
bandwidth efficiency). If the rates of receivers are synchro-
nized, only one copy of each packet is delivered in a Steiner
tree. When receivers have different receiving bandwidths,
we expect all the rates of receivers are synchronized to the
receiving rate of the slowest receiver.

A synchronized scheme may suffer from significant through-
put degradation if a receiver in the group has a small receiv-
ing rate. In this case, we may either kick out the very slow
receivers, or split the data delivery group into multiple ones.
These topics are our future work.

Datacast uses the classical AIMD for congestion control.
This is not new. What is new in Datacast is how conges-
tion is detected. Datacast uses duplicate interests as conges-
tion signals. A duplicate interest is an interest requiring the
same data which has been asked before. The source receives
a duplicate interest under the following two cases: 1) The
network is congested, so some packets are dropped. Then
the receiver will retransmit the interest, which serves as a
duplicate interest. 2) Receivers are out of sync. When slow
receivers cannot keep up with the fast ones, their interests
will not be served by the cache of the intermediate devices.
The interests will finally be sent to the data source, which
serves as duplicate interests. In these cases, the source needs
to slow down its sending rate. On the other hand, if there
is no congestion and the rates of receivers are well synchro-
nized, there will be no duplicate interests, and the source
should increase its sending rate.

After congestion is detected, the rate adjustment becomes
easy: when the source receives a duplicate interest, it de-

41

creases its sending rate by half; when no duplicate interest
is received in a time interval T , the source increases the
sending rate by δ. Datacast congestion control is therefore
rate-based. The source maintains and controls a sending
rate r1. Note that the sending rate of the duplicate data
packet is not constrained by the congestion control, since
the corresponding duplicate interest packets are from the
slowest receiver, and the receiving rate of the slowest receiv-
er should not be further reduced.

At the receivers’ side, each receiver is given a fixed number
of credit, w, which means that one receiver can send at most
w interests into the network. When a receiver sends out an
interest, the credit is decremented by one. When it receives
a data packet, its credit is incremented by one. In Datacast,
the guideline for setting w is to saturate the pipe. In a
DCN with 1Gbps link, when the RTT is 200us (which is a
typical network latency in a data center environment), w =
16 can saturate the link. To achieve reliability, the receiver
retransmits an interest if the corresponding data packet does
not come back after a timeout. The timeout is calculated in
the same way as TCP.

To summarize, Datacast congest control algorithm works
as follows.

r = {
r
2

when a duplicate interest is received.
r + δ when there is no duplicate interest in T.

As we can see, the Datacast congestion control algorithm
is simple. The source does not need to know which receiver
is the slowest one, and what is the available bandwidth of
that slowest receiver. In Section 5.4, we will show analyti-
cally that Datacast uses small caches size and results in few
duplicate data transmissions.

5.3 Cache management
To prevent cache interferences among different transmis-

sion trees, we use a per-tree based cache replacement algo-
rithm. Each device uses a per Datacast tree based cache
with size C. This is possible due to the following reasons:
1) A Datacast tree can be uniquely identified by a global
unique tree transmission id (assigned by Master). 2) The
cache size needed by each tree is small (as we will show in
the next subsection).

In each tree, we find that the most popular data pack-
ets are the new ones, since new data packets will always be
accessed by other receivers in the future. To keep new da-
ta packets in caches and erase old data packets, Datacast
chooses First In First Out (FIFO) as its per-tree cache re-
placement policy. To prevent unpopular data packets from
being put into caches, Datacast does not cache duplicate
data packets.

Note that although this is a per-tree strategy, it is a scal-
able solution. The reasons are: 1) Compared with IP multi-
cast, we do not need any protocol (e.g., IGMP) to maintain
Datacast’s per-tree states. Switches just use local decisions
to manage its cache. 2) Datacast can work efficiently with
small caches, e.g., 125KB, and large memory is expected for
future network devices, e.g., 16GB memory for a switch. If
it uses 4GB as Datacast cache, a network device can support
up to 32k (≈ 4GB

125KB
) simultaneous trees.

1To be exact, this is the rate of the source’s token bucket.
The source cannot achieve this rate if there are not enough
interests from the receivers.

5.4 Properties of Datacast congestion control
algorithm

In this subsection, we study the following questions: 1)
What is the condition for Datacast to work at the full rate
(i.e., the receiving rate of the slowest receiver)? 2) When
Datacast works at the full rate, how much duplicate data will
be sent from the data source? We define the duplicate data
ratio as the ratio of the duplicate data sent by the source
to all the new data sent. To answer these questions, we
have built a fluid model and derived the following theorems.
(Details are presented in Appendix.)

Theorem 1. Datacast works at the full rate, i.e., the rate
of the slowest receiver, R, if the cache size, C, satisfies

C >
R2T

2δ

Theorem 2. When Datacast works at the full rate, the
duplicate data ratio of Datacast is

δ
T

δ
T

+ R2

2MTU

Theorem 1 tells us Datacast works at the full rate when
the cache size is greater than R2T

2δ
. For example, when δ =

5Mbps, T = 1ms, and R = 100Mbps, Datacast works at the
full rate when the cache size C is larger than 125KB. Theo-
rem 2 reveals the bandwidth efficiency of Datacast. In the
above example, the duplicate data ratio is 1.19%. Theorem
1 and 2 tell us that Datacast can achieve the goal of high
bandwidth efficiency, and at the same time it also meets the
requirement of using small cache size in the intermediate
devices.

6. SIMULATION
In this section, we use simulations to study Datacast.

First, we evaluate our multiple Steiner trees algorithm. Sec-
ond, we design micro benchmarks to study Datacast conges-
tion control algorithm. Third, we compare the performance
of Datacast with the most widely used P2P overlay, BitTor-
rent.

6.1 Evaluation of the multiple Steiner trees al-
gorithm

To study the performance of the multiple Steiner trees al-
gorithm, we use a Dell PowerEdge R610 server, which has
two E5520 Intel Xeon 2.26GHz CPU and 32GB RAM. We
study our algorithm under three topologies, Fattree(24, 3),
BCube(8, 3) and Torus(16, 3). The BCube and Torus con-
tain 4096 servers, while the Fattree contains 3456 servers.
For each simulation, we randomly generate link failures. The
link failure rates (LFR) include 1%, 3% and 5%. We ignore
the cases when the network is not connected.

6.1.1 Running time
Figure 5 shows the running times of our algorithm. From

the results, we can see that our algorithm can finish all of
the tree calculations within 10ms.

We compared our algorithm with the generic algorithm
which first calculates the spanning trees using Po’s algo-
rithm [24], then prunes them to get Steiner trees. The
time complexity of the generic algorithm is dominated by

42

 0

 5

 10

 15

 20

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

m
s
)

Group Size

Fattree(24, 3), LFR=1%
Fattree(24, 3), LFR=3%
Fattree(24, 3), LFR=5%

BCube(8, 3), LFR=1%
BCube(8, 3), LFR=3%
BCube(8, 3), LFR=5%
Torus(16, 3), LFR=1%
Torus(16, 3), LFR=3%
Torus(16, 3), LFR=5%

Figure 5: Running times of our Steiner tree algo-
rithm.

 0

 2

 4

 6

 8

 10

10
0

10
1

10
2

10
3

10
4

10
5

A
v
e

ra
g

e
 S

te
in

e
r

T
re

e
 N

u
m

b
e

r

Group Size

Fattree(24, 3), LFR=1%
Fattree(24, 3), LFR=3%
Fattree(24, 3), LFR=5%

BCube(8, 3), LFR=1%
BCube(8, 3), LFR=3%
BCube(8, 3), LFR=5%
Torus(16, 3), LFR=1%
Torus(16, 3), LFR=3%
Torus(16, 3), LFR=5%

Figure 6: The numbers of Steiner trees with differ-
ent failure rates and group sizes.

the spanning tree calculation. The times needed for calcu-
lating spanning trees for Fattree(24, 3), BCube(8, 3) and
Torus(16, 3) are 1, 39 and 42 seconds respectively. This
algorithm therefore cannot be used in Datacast.

6.1.2 Steiner tree number
Figure 6 shows the numbers of Steiner trees constructed

by our algorithm. For BCube and Torus, the numbers of
Steiner trees decrease as the group size and the link failure
rate increase. This is expected, since a large group would ex-
perience more link failures, and more link failures will break
more trees. Though Fattree has only one Steiner tree, our
algorithm helps on failure recovery when the original tree is
broken by link failures.

To check whether our algorithm can create enough Steiner
trees, we have derived a bound of the Steiner tree number,
which is the minimum value of the out-degree of the source
and the in-degrees of all the receivers. The Steiner tree
numbers produced by our algorithm are only 0.8% less than
the bounds on average.

6.1.3 Steiner tree depths
Our algorithm also guarantees small tree depths. For ex-

ample, when the link failure rate is 1%, the average Steiner
tree depths for BCube, Torus and Fattree, are 9.99, 24.31
and 6.00, respectively.

6.2 Micro benchmarks for Datacast conges-
tion control algorithm

We have built Datacast in NS3. In this subsection, we
use micro benchmarks to study Datacast congestion control

<0,0>

00

01 02 03

<0,1>

10

11 12 13

<0,2>

20

21 22 23

<0,3>

30

31 32 33

<1,1> <1,2> <1,3>

(a) Steiner Tree 1

<1,0>

00

10 20 30

<1,1>

01

11 21 31

<1,2>

02

12 22 32

<1,3>

03

13 23 33

<0,1> <0,2> <0,3>

(b) Steiner Tree 2

Figure 7: The simulation and experiment setup.
The green node, 00, is the source, while the blue
ones, 02, 10, 21, 23, 31 and 33, are the receivers.

Cache Size
(KB)

Throughput
(Mbps)

Duplicate Data
Ratio (%)

8 91.380 1.15
32 95.076 1.14
128 98.799 1.11
512 98.799 1.10
2048 98.799 1.12

Table 1: Datacast’s performance under different
cache sizes.

algorithm in a BCube(4, 1). We use a single multicast tree
shown in Figure 7(a). The green node, 00, is the source,
while the blue ones, 02, 10, 21, 23, 31 and 33, are the re-
ceivers. δ = 5Mbps, T = 1ms and MTU = 1.5KB. The
link rates are 1Gbps, and the propagation delays are 5us.
We slow down the link from switch <0,0> to node 02 to
100Mbps to make node 02 the slowest receiver. The queue
size for each link is 100 packets. The headers of the interest
and data packets are both 16 bytes. The initial rate of the
source is 500Mbps.

6.2.1 Efficiency study
We first verify Theorem 1. We vary the cache sizes from

8KB to 2048KB. Based on Theorem 1, Datacast works at
the full rate when the cache size is larger than 125KB. The
simulation results are shown in Table 1. From the results, we
can see that Datacast works at the full rate when the cache
size is larger than 125KB. Its throughput, 98.799Mbps, is
very close to the optimal results, which is 98.933Mbps (=
100Mbps × 1500−16

1500
). The table also shows that the through-

put of Datacast degrades gracefully when the cache size is
smaller than 125KB.

The table shows that the duplicate data ratio is about
1.12%. This is close to the result produced by Theorem 2,
1.19%. It also shows that the duplicate data ratio does not
depend on the cache size once Datacast works at the full
rate. To examine the accuracy of Theorem 2, we also vary
the rate increase, δ, from 0.10Mbps to 102.40Mbps. From
the results shown in Figure 8, we can see that the duplicate
data ratio derived from our model is consistent with the
simulation results.

6.2.2 Performance under packet losses
To see whether Datacast is resilient to packet losses, we

randomly drop data packets at the link from switch <0,0>

43

10
-4

10
-3

10
-2

10
-1

10
0

 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4

D
u

p
lic

a
te

 D
a

ta
 R

a
ti
o

δ (Mbps)

Theoretical Results
Simulation

Figure 8: Duplicate data ratio vs. δ.

 70

 75

 80

 85

 90

 95

 100

 105

 110

10
-5

10
-4

10
-3

10
-2

10
-1
 0

 2

 4

 6

 8

 10

F
in

is
h

 T
im

e
 (

s
)

D
u

p
lic

a
te

 D
a

ta
 R

a
ti
o

 (
%

)

Packet Loss Rate

Finish Time
Duplicate Data Ratio

Figure 9: Datacast’s performance under different
packet loss rates.

to node 02. The packet drop rate ranges from 0.001% to
4.096%. The cache sizes are set to 128KB. The results in
Figure 9 shows that Datacast is quite resilient to packet loss-
es. Even when the packet loss rate is 1.02%, the finish time
only increases by 2.76% and the duplicate ratio is 1.23%.

6.2.3 Fairness
In this simulation, we set all the links back to 1Gbps. To

study intra-protocol fairness, we set up multiple Datacast
groups. The first group, which is shown in Figure 7(a), starts
at time 0s. At time 10s, we start three new groups, whose
source is node 00 and receivers are node 12, 22, 32. These
three groups stop at time 40s. At time 20s, we start another
six groups, whose source is node 00 and receivers are node 11
and 21. These groups end at time 30s. The ten groups share
a congestion point at the link from node 00 to switch <0,0>.
From the results shown in Figure 10(a), we can see that the
first four groups equally get about 250Mbps throughput af-
ter time 10s, and the ten groups equally get about 100Mbps
after time 20s. This means that Datacast congestion control
algorithm achieves good intra-protocol fairness.

We also investigate whether Datacast congestion control
algorithm is friendly to TCP. Similarly, we set up a Datacast
group shown in Figure 7(a), which starts at time 0s. At time
10s, three TCP connections from node 00 to node 02 start.
The three connections end at time 40s. At time 20s, six
TCP connections from node 00 to node 01 start, which end
at time 30s. The Datacast and TCP connections congest
at the link from node 00 to switch <0,0>. The results are
shown in Figure 10(b), which suggest that Datacast conges-
tion control algorithm has good inter-protocol fairness with
TCP.

Datacast achieves good inter-protocol fairness with TCP,
since their additive increase parts are at the same magni-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (s)

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9

Group 10

(a) Intra-protocol fairness.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (s)

Datacast
TCP 1
TCP 2
TCP 3
TCP 4
TCP 5
TCP 6
TCP 7
TCP 8
TCP 9

(b) Inter-protocol fairness with TCP.

Figure 10: Intra-protocol and inter-protocol fair-
ness.

tude. In this simulation, we measure that the RTT of TCP
is about 1ms when there are nine TCP flows and one Data-
cast group. TCP increases its rate at the speed of 12Mbps
(= MTU

RTT
) per RTT (1ms), while Datacast increases its rate

at the speed of 5Mbps per millisecond. Therefore, Datacast
and TCP achieve good inter-protocol fairness.

6.2.4 Cache replacement algorithms
We study the performance of Datacast when different cache

management policies are used. We find that the cache man-
agement algorithms affect the duplicate data ratio. We
evaluate three representative cache management algorithms,
Least Recently Used (LRU), Least Frequently Used (LFU)
and First In First Out (FIFO). The three algorithms differ
in the replacement of cache items. When we need to replace
an old item with a new one, LRU replaces the one that has
been least used recently, LFU replaces the one that has the
lowest used frequency, and FIFO replaces the one that first
enters the cache.

The cache miss ratios for LRU, LRU and FIFO are 3.90%,
1.63% and 1.12%, respectively. LRU and LFU cause larger
duplicate data ratios due to the following reason. When the
slowest receiver cannot keep up with the fast ones, its in-
terests will be sent to the data source as duplicate interests,
and then the source slows down its sending rate. During
the process that the slowest receiver is catching up with the
fast ones, it accesses the old data packets in the caches and
makes its next data packet as the least recently (or frequent-
ly) used when LRU (or LFU) is used. So if the source sends
out a new packet for the fast receivers, it will erase the next
data packet for the slowest receiver in intermediate devices’
caches, resulting in more cache misses and duplicate data.

44

 2

 3

 4

 5

 6

 7

 8

 9

 8 16 32 64 128 256 512 1024

F
in

is
h
 T

im
e
 (

s
)

Group Size

BT-Optimized
BT-Cornet

Datacast

 0

 500

 1000

 1500

 2000

 2500

 3000

 8 16 32 64 128 256 512 1024

N
e
tw

o
rk

 S
tr

e
s
s
 (

G
B

)

Group Size

BT-Optimized
BT-Cornet

Datacast

(a) Fattree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 8 16 32 64 128 256 512 1024

F
in

is
h
 T

im
e
 (

s
)

Group Size

BT-Optimized
BT-Cornet

Datacast

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 8 16 32 64 128 256 512 1024

N
e
tw

o
rk

 S
tr

e
s
s
 (

G
B

)

Group Size

BT-Optimized
BT-Cornet

Datacast

(b) BCube

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 16 32 64 128 256 512 1024

F
in

is
h
 T

im
e
 (

s
)

Group Size

BT-Optimized
BT-Cornet

Datacast

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 8 16 32 64 128 256 512 1024

N
e
tw

o
rk

 S
tr

e
s
s
 (

G
B

)

Group Size

BT-Optimized
BT-Cornet

Datacast

(c) Torus

Figure 11: Performance comparison of Datacast and BitTorrent.

6.3 Performance comparison
BitTorrent was originally designed for P2P file sharing in

the Internet. Since a data center is a collaborative environ-
ment and the network topology can be known in advance, we
use techniques similar to Cornet [11] to improve the original
BitTorrent. Cornet improvements include: a server does not
immediately leave the system after it receives all the content;
no SHA1 calculation per block; use large block size (4MB).
Cornet suggests using large block size (4MB). Our simula-
tions demonstrate that smaller block size results in better
performance. We choose 108KB as the block size in the sim-
ulations. We call the Cornet optimized version BT-Cornet.
Similar to Cornet, we also consider the topology awareness.
Since the topologies we use have rich topological informa-
tion, we design the following neighbor selection algorithm:
a server selects 10 peers (when the group size is less than
10, all the members are peers). It sorts the group members
via the distance. It prefers peers with a small distance, but
guarantees that at least one member (if it exists) is selected
as its peer at each distance range. Similar to Cornet, tit-for-
tat and choke-unchoke are disabled. We call the optimized
version BT-Optimized.

We use two metrics for the comparison. The first met-
ric is the network stress, which is the sum of all the bytes
transmitted on all the links. The second is the finish time.

In all the simulations, the source sends 500MB data. Fig-
ure 11 shows the performances of Datacast, BT-Cornet, BT-
Optimized under different group sizes for three different topolo-
gies, Fattree(24, 3), BCube(8, 3) and Torus(16, 3). The
group size varies from 8 to 1024. Our results clearly demon-
strate that Datacast is better than BT-Cornet and BT-
Optimized in terms of the network stress of the finish time.
On BCube and Torus, Datacast is much faster since each
server has multiple 1GbE ports. In all the simulations, the
network stresses of BT-Optimized are 1.2-3.5X than Data-
cast, and Datacast is 1.1-3.7X faster than BT-Optimized.

We also note that in our simulations, when the topology
is Fattree, the finish time with BT-Cornet is smaller than
with BT-Optimized. This is because with BT-Optimized, we

prefer peers that are close with each other. This preference
may result in small cliques which may not be fully connected.
BCube does not have such an issue because its structure does
not have hierarchy.

In the experiments, Datacast’s finish times are quite close
to the ideal cases. There is one Steiner tree in Fattree(24,
3), and there are four Steiner trees in BCube(8, 3), and
six in Torus(16, 3). Therefore the ideal finish times are 4s,
1s and 0.67s for Fattree(24, 3), BCube(8, 3) and Torus(16,
3), respectively. The finish times of Datacast are 0.67%
larger than the ideal cases on average. Datacast is also ef-
ficient. The average link stress of Datacast is only 1.002,
which means that each packet only traverse each Steiner
tree link 1.002 times on average.

7. IMPLEMENTATION

7.1 ServerSwitch based implementation
We have implemented Datacast using the design shown in

Figure 2. Fabric Manager, Master, data source and receivers
are all implemented as user-mode applications. Each node in
the data center runs a Datacast daemon, which is responsi-
ble for forwarding and receiving signalling messages. When
Datacast is trying to start a group for data transmission, it
first starts a Master process. The Master process calculates
multiple Steiner trees, and then sends signalling messages to
the group members. The daemons on these nodes will start
the data source process and the receiver processes. Then
the transmission starts.

To cache data packets in intermediate nodes, we use the
ServerSwitch platform [8]. ServerSwitch is composed of an
ASIC switching chip and a commodity server. The switch-
ing chip is connected to the server CPU and memory using
PCI-E. ServerSwitch’s switching chip is programmable. It
uses a TCAM table to define operations for specific types
of packets. To implement data packet caching in switch-
es, we use User Defined Lookup Keys (UDLK) to forward
data packets to the Datacast kernel mode driver at branch
nodes. The driver is used to do the in-network data packet

45

caching. At non-branch nodes, the data packets are directly
forwarded by hardware.

7.2 Evaluation
In this subsection, we use our real testbed implementation

to evaluate Datacast. We use a BCube(4, 1) with 1Gbps
links for our study. 8KB jumbo frame is used in the experi-
ment.

7.2.1 Efficiency study
We study Datacast’s performance when different cache

sizes are set for branching nodes. We use a single Steiner
tree shown in Figure 7(a) and slow down the link from switch
<1,3> to node 23 to 100Mbps. We let δ = 5Mbps and
T = 2ms. Based on Theorem 1, Datacast works at the full
rate when the cache size is larger than 256KB. When we use
64KB cache, the average throughput is 91.998Mbps, which is
still acceptable due to the graceful throughput degradation
of Datacast. When the cache size is 256KB, the average
throughput is 99.595Mbps, and the duplicate data ratio is
3.48%, which is close to the theoretical result of Theorem 2,
3.10%.

7.2.2 Performance comparison
We compare the performance of Datacast with BitTorrent

(we use µtorrent). In this experiment, we use both Datacast
and BitTorrent to transfer 4GB data. The cache size on
each branch node is 512KB. For Datacast, δ = 125Mbps
and T = 1ms.

Datacast finishes the transmission within 16.9s. The source
achieves 1.89Gbps throughput on average, which is close to
the 2Gbps capacity of the two 1GbE Steiner trees. The link
stress of Datacast is 1.01. This means that Datacast achieves
high bandwidth efficiency, since each packet only traverses
each Steiner tree link 1.01 times on average. We compare
Datacast with BitTorrent. Using BitTorrent, the receivers
finish the downloading in 41-52s, and the link stress is 1.39.
So BitTorrent is 2.75 times slower than Datacast on average,
while its link stress is 1.38 times larger.

7.2.3 Failure handling
To study the failure handling of Datacast, we manual-

ly tear down the slow link. Our Fabric Manager detects
the link failure in 483ms, and then notifies all the Mas-
ters. The Master uses the signalling protocol proposed in
Section 3 to deliver the signalling messages to all the re-
ceivers in 2.592ms. (As a comparison, using TCP to send the
signalling messages to receivers in parallel takes 20.122ms.)
Then the transmission continues.

8. RELATED WORK
RGDD is an important traffic pattern, which has been

studied for decades. Existing solutions can be classified into
two categories.
Reliable IP multicast. The design space of reliable IP
multicast has been nicely described in [12]. IP multicast has
scalability issues for maintaining a large number of group
states in the network. Adding reliability to IP multicast is
also hard due to the ACK implosion problem [13].

We compare Datacast with two representative reliable mul-
ticast systems: pgm congestion control (pgmcc) [21] and
Active Reliable Multicast (ARM) [25]. Pgmcc needs to ex-
plicitly track the slowest receiver for congestion control, and

the congestion control protocol needs to be run between the
sender and the slowest receiver. Datacast does not need to
track which receiver is the slowest. This is because Data-
cast uses the duplicate interest packets as congestion signals,
hence congestion control becomes the local action of the
sender. ARM uses the active network concept and network
devices also cache packet, but the cached packets are used
only for re-transmission. Hence most likely the cached pack-
ets will not be used even once. Furthermore, re-transmitted
packets are broadcasted along the whole sub-tree in ARM,
whereas they are delivered only to the needed receivers in
Datacast.
End-host based overlay system. End-host based overlay
system overcomes the scalability issue by transmitting data
among peers. No group states are needed in network devices,
and reliability is easily achieved by directly using TCP. It
is widely used in the Internet. However, end-host based
overlay systems suffer from low bandwidth efficiency. For
example, the worst-case link stress of SplitStream can be
tens [3], and the average and worst-case link stresses of End
System Multicast (ESM) [18] are 1.9 and 9, respectively.

Recently, in the work of Orchestra [11], Cornet is pro-
posed, which is an optimized version of BitTorrent for DCNs.
Different from the distributed manner of Cornet, Datacast
is a centralized approach. Due to the fact that a data cen-
ter network is built and managed by a single organization,
centralized designs become possible (e.g., software-defined
networking [17]). Due to its centralized nature, Datacast is
able to utilize multiple Steiner trees for data delivery, and
achieve minimum finish time. Since the routing path from a
receiver to data source is predetermined, high cache utiliza-
tion is achieved. Furthermore, as we have demonstrated in
the paper, the intermediate device only needs to maintain
small cache per Steiner tree. All these benefits are hard,
if not totally impossible, to be achieved by distributed ap-
proaches like Cornet.

9. CONCLUSION
In this paper, we have presented the design, analysis, im-

plementation and evaluation of Datacast for RGDD in da-
ta centers. Datacast first calculates multiple edge-disjoint
Steiner trees with low time complexity, and then distributes
data among them. In each Steiner tree, by leveraging in-
network packet caching, Datacast uses a simple, but effec-
tive congestion control algorithm to achieve scalability and
high bandwidth efficiency.

By building a fluid model, we show analytically that the
congestion control algorithm uses small cache size for each
group (e.g., 125KB), and results in few duplicate data trans-
missions (e.g., 1.19%). Our analytical results are verified by
both simulations and experiments. We have implemented
Datacast using the ServerSwitch platform. When we use
Datacast to transmit 4GB data in our 1GbE BCube(4, 1)
testbed with two edge-disjoint Steiner trees, the link stress
is only 1.01 and the finish time is 16.9s, which is close to the
16s lower bound.

10. ACKNOWLEDGEMENT
We thank Zhenyu Guo, Wei Lin, Zhengping Qian, Ming

Wu for helping us understand more about RGDD, and Xin
Liu for suggestions on the model improvements. We thank
our shepherd Prof. Vishal Misra and the anonymous review-

46

ers for their valuable suggestions that improve the presenta-
tion of the paper.

11. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[2] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan
Seshan, and Scott Shenker. Packet Caches on Routers: The
Implications of Universal Redundant Traffic Elimination. In
SIGCOMM, 2008.

[3] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
Animesh Nandi, Antony Rowstron, and Atul Singh.
SplitStream: High-Bandwidth Multicast in Cooperative
Environments. In SOSP, 2003.

[4] Bram Cohen. Incentives Build Robustness in BitTorrent. In
Workshop on Economics of Peer-to-Peer Systems, 2003.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[6] J. Edmonds. Edge-disjoint branchings. In R. Rustin, editor,
Combinatorial Algorithms, pages 91–96. Algorithmics
Press, New York, 1972.

[7] C. Guo et al. BCube: A High Performance, Server-centric
Network Architecture for Modular Data Centers. In
SIGCOMM, 2009.

[8] Guohan Lu et al. ServerSwitch: A Programmable and High
Performance Platform for Data Center Networks. In NSDI,
2011.

[9] Hussam Abu-Libdeh et al. Symbiotic Routing in Future
Data Centers. In SIGCOMM, 2010.

[10] J. Cao et al. Datacast: A Scalable and Efficient Group
Data Delivery Service for Data Centers. Technical Report
MSR-TR-2012-57, MSR, 2012.
http://research.microsoft.com/apps/pubs/?id=166825.

[11] M. Chowdhury et al. Managing Data Transfers in
Computer Clusters with Orchestra. In SIGCOMM, 2011.

[12] M. Handley et al. The Reliable Multicast Design Space for
Bulk Data Transfer, Aug 2000. RFC2887.

[13] Sally Floyd et al. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing.
IEEE trans. Networking, Dec 1997.

[14] Van Jacobson et al. Networking Named Content. In
CoNEXT, 2009.

[15] S. Ghemawat, H. Gobioff, and S. Leung. The Google File
System. In SOSP, 2003.

[16] R. L. Graham and L. R. Foulds. Unlikelihood That
Minimal Phylogenies for a Realistic Biological Study Can
Be Constructed in Reasonable Computational Time.
Mathematical Bioscience, 1982.

[17] K. Greene. Special reports 10 emerging technologies 2009.
MIT Technology Review, 2009.
http://www.technologyreview.com/biotech/22120/.

[18] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui
Zhang. A Case for End System Multicast. IEEE JSAC, Oct
2002.

[19] M. Isard, M. Budiu, and Y. Yu. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. In
EuroSys, 2007.

[20] Force10 networks. Force10 s7000. www.force10networks.com.

[21] Luigi Rizzo. pgmcc: a TCP-friendly Single Rate Multicast
Congestion Control Scheme. In SIGCOMM, 2000.

[22] Shyue-Ming Tang, Jinn-Shyong Yang, Yue-Li Wang, and
Jou-Ming Chang. Independent Spanning Trees on
Multidimensional Torus Networks. IEEE Trans.
Computers, Jan 2010.

[23] David L. Tennenhouse and David J. Wetherall. Towards an
Active Network Architecture. SIGCOMM CCR, Apr 1996.

[24] Po Tong and E. L. Lawler. A Fast Algorithm for Finding
Edge-disjoint Branchings. Information Processing Letters,
Aug 1983.

Notation Meaning
t The current time.

xs(t) The data sequence position of the data source.
xr(t) The data sequence position of the slowest receiver.
R The rate of the slowest receivers.
C The size of the cache (the content store).

MTU The size of a full Datacast data packet.
δ, T The two parameters of Datacast congestion con-

trol, which are proposed in Section 5.2.
ta The start time of state 0.
tb The end time of state 0, and the start time of state 1.
tc The end time of state 1.

∆x(t) xs(t) − xr(t)

Table 2: Notations used in the fluid model.

[25] Li wei H. Lehman, Stephen J. Garland, and David L.
Tennenhouse. Active Reliable Multicast. In INFOCOM,
1998.

[26] J. Widmer and M. Handley. TCP-Friendly Multicast
Congestion Control (TFMCC): Protocol Specification,
Auguest 2006. RFC 4654.

[27] J.S. Yang, S.M. Tang, J.M. Chang, and Y.L. Wang.
Parallel Construction of Optimal Independent Spanning
Trees on Hypercubes. Parallel Computing, 33, 2007.

APPENDIX
A. PROOF OF THE DATACAST THEOREMS

We build a fluid model to analyze the performance of
Datacast. We make the following assumptions: 1) The (de-
sired2) rate of the slowest receiver, R, does not change over
time. 2) Network latencies and queueing delays are negli-
gible. In data center environment, network latency is small
and around several hundreds of microseconds. 3) The cred-
it number w is large enough to saturate the pipe. Table 2
shows the notations that are used in the analysis. Our fluid
model can be described by the following equations:

x′′s (t) = (1− p(t)) δ
T
− p(t)x

′
s(t)

2

x′r(t)

MTU
(1)

x′r(t) =

{
R if xr(t) < xs(t)
max{R, x′s(t)} if xr(t) = xs(t)

(2)

p(t) = 1{xs(t)−xr(t)>C} (3)

In this model, Equation (2) captures the slowest receiv-
er’s (actual) rate. When the source is ahead of the slowest
receiver, the slowest receiver’s rate is R. When the slowest
receiver catches up with the source, its rate is constrained
by both the source’s rate and R. Equation (3) is an indi-
cator function. p(t) = 1 when the data source receives a
duplicate interest, otherwise p(t) = 0. Equation (1) mod-
els the rate control at the data source. δ

T
captures a con-

stant rate increase δ in every time period T if there is no
duplicate interest. The second term is the rate decrease
when duplicate interests are received (i.e., p(t) = 1). When
p(t) = 1, the data source receives one duplicate interest from
the slowest receiver in every time period MTU

x′r(t)
, and decreas-

es its sending rate by half. The decreasing rate therefore is
x′s(t)

2
/MTU
x′r(t)

=
x′s(t)

2

x′r(t)
MTU

.

We say the system is in state 0 when p(t) = 0, in state 1
when p(t) = 1. It is easy to see that the system will oscil-
late between the two states, since x′′s (t) > 0 in state 0, and

2Here “desired” means that the rate of the slowest receiver
is not constrained by the sending rate of the data source.

47

t

p(t)

. . .

a cycle

0
ta tb tc

state 0

state 1

1

Figure 12: An illustration of the state changes in
Datacast.

x′′s (t) < 0 in state 1. We call it a cycle from the start of
state 0 to the end of state 1. Figure 12 gives us an illustra-
tion of how state changes in Datacast.

Proof of Theorem 1:

Proof. We first prove that if C > R2T
2δ

, the rate of the
slowest receiver is R, i.e., x′r(t) = R. To prove that, we first
prove ∆x(t) > 0. It is easy to see it holds in state 1, since
it is ∆x(t) > C in state 1. In state 0, we have x′′s (t) = δ

T
,

and we can calculate

x′s(t) = x′s(ta) +
δ

T
(t− ta)

From Equation (2), we have x′r(t) ≤ R. Then we can
derive

∆x′(t) ≥ x′s(ta) +
δ

T
(t− ta)−R (4)

Based on Inequality (4) and ∆x(ta) = C, we can derive

∆x(t) ≥ δ

2T
(t− ta)2 + (x′s(ta)−R)(t− ta) + C (5)

The right side of Inequality (5) achieves its minimum value
when t = ta + T

δ
(R − x′s(ta)), and ta + T

δ
(R − x′s(ta)) is in

the region of (ta, tb). It is greater than ta, since x′s(ta) < R.
It is lower than tb, since tb = ta + T

δ
(x′s(tb) − x′s(ta)) and

x′s(tb) > R. Put it into Inequality (5), we get

∆x(t) ≥ δ

2T
(
T

δ
)2(R− x′s(ta))2 − T

δ
(R− x′s(ta))2 + C

= C − T

2δ
(R− x′s(ta))2

≥ C − R2T

2δ

Since C > R2T
2δ

, we have ∆x(t) > 0 in state 0. ∆x(t) is
therefore always greater than 0 in both states.

Putting ∆x(t) > 0 into (2), we get x′r(t) = R, which
means that the slowest receiver’s rate is not slowed down.
We can further prove that the average sending rate of the
data source will converge to R (which is omitted due to the
space limitation), i.e., Datacast works at the full rate when

C > R2T
2δ

.

Theorem 1 provides a sufficient condition to guarantee
x′r(t) = R. When C is not large enough, x′r(t) can be con-
strained by x′s(t) in state 0. However, x′s(t) will grow at a
constant speed, δ

T
. xs(t) will soon be greater than xr(t),

which means that the slowest receiver’s rate is back to R.
Even when C is not large enough, the system will experience

graceful performance degradation instead of abrupt perfor-
mance changes, as we have observed in the simulations and
experiments.

Proof of Theorem 2:

Proof. The duplicate ratio can be calculated as

(tc − tb)R
xs(tc)− xs(ta)

when Datacast works at full rate, i.e., x′r(t) = R. (tc − tb)R
is the amount of duplicate data that the slowest receiver re-
quested in state 1, while xs(tc) − xs(ta) is the amount of
new data sent from the source in the whole cycle. Notic-
ing that ∆x(ta) = ∆x(tc) = C, we have xs(tc) − xs(ta) =
xr(tc)−xr(ta). Since x′r(t) = R, xr(tc)−xr(ta) = (tc−ta)R.
The duplicate data ratio can be calculated as

tc − tb
tc − ta

(6)

To calculate (6), we first derive the durations of two states.
In state 0, x′′s (t) = δ

T
and x′r(t) = R, based on which we

get

∆x(t) =
δ

2T
(t− ta)2 + (x′s(ta)−R)(t− ta) + C (7)

In state 0, since x′s(t) increases linearly, we have

x′s(tb) = x′s(ta) +
δ

T
(tb − ta) (8)

Combining ∆x(tb) = C and Equation (7) and (8), we get

x′s(tb) = 2R− x′s(ta) (9)

Putting Equation (9) back into Equation (8), we have

tb − ta =
2(R− x′s(ta))

δ
T

(10)

In state 1, x′′s (t) = −x
′
s(t)

2

x′r(t)
MTU

and x′r(t) = R, based on
which we can derive

∆x(t) =
2MTU

R
x′s(tb)(1− e−

R
2MTU

(t−tb))− (t− tb)R+ C

(11)
In state 1, since x′s(t) decreases exponentially, we have

x′s(tc) = x′s(tb)e
− R

2MTU
(tc−tb) (12)

Combining Equation (9), (11) and (12), we derive

tc − tb =
2R− x′s(ta)− x′s(tc)

R2

2MTU

The end of state 1 is also the start of state 0 in the next
cycle. In stable state, x′s(tc) and x′s(ta) are the same, we
thus have

tc − tb =
2(R− x′s(ta))

R2

2MTU

(13)

Combining (6) with the durations of the two states, (10)
and (13), the duplicate ratio is

tc − tb
tc − ta

=

2(R−x′s(ta))
R2

2MTU

2(R−x′s(ta))
R2

2MTU

+
2(R−x′s(ta))

δ
T

=
δ
T

δ
T

+ R2

2MTU

48

