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Abstract—Transformers have become keystone models in nat-
ural language processing over the past decade. They have
achieved great popularity in deep learning applications, but the
increasing sizes of the parameter spaces required by transformer
models generate a commensurate need to accelerate perfor-
mance. Natural language processing problems are also routinely
faced with variable-length sequences, as word counts commonly
vary among sentences. Existing deep learning frameworks pad
variable-length sequences to a maximal length, which adds
significant memory and computational overhead. In this paper,
we present ByteTransformer, a high-performance transformer
boosted for variable-length inputs. We propose a padding-free
algorithm that liberates the entire transformer from redundant
computations on zero padded tokens. In addition to algorithmic-
level optimization, we provide architecture-aware optimizations
for transformer functional modules, especially the performance-
critical algorithm Multi-Head Attention (MHA). Experimental
results on an NVIDIA A100 GPU with variable-length sequence
inputs validate that our fused MHA outperforms PyTorch by
6.13x. The end-to-end performance of ByteTransformer for a for-
ward BERT transformer surpasses state-of-the-art transformer
frameworks, such as PyTorch JIT, TensorFlow XLA, Tencent
TurboTransformer, Microsoft DeepSpeed-Inference and NVIDIA
FasterTransformer, by 87%, 131%, 138%, 74% and 55%,
respectively. We also demonstrate the general applicability of
our optimization methods to other BERT-like models, including
ALBERT, DistilBERT, and DeBERTa.

Index Terms—Transformer, BERT, Multi-head Attention,
MHA, Natural Language Processing, NVIDIA GPU, CUTLASS

I. INTRODUCTION

The transformer model [1]is a proven effective architecture
widely used in a variety of deep learning (DL) applications,
such as language modeling [2], [3], neural machine translation
[1], [4] and recommendation systems [5], [6]. The last decade
has witnessed rapid developments in natural language process-
ing (NLP) pre-training models based on the transformer model,
such as Seq2seq [1], GPT-2 [7] and XLNET [3], which have
also greatly accelerated the progress of NLP. Of all the pre-
training models based on transformers, Bidirectional Encoder
Representations from Transformers (BERT), proposed in 2018
[2], is arguably the most seminal, inspiring a series of subse-

We have made ByteTransformer open-source and available at a public
GitHub repository: https://github.com/bytedance/ByteTransformer.

quent works and outperforming reference models on a dozen
NLP tasks at the time of creation.

BERT-like models consume increasingly larger parameter
space and correspondingly more computational resources.
When BERT was discovered, a large model required 340
million parameters [8], but currently a full GPT-3 model
requires 170 billion parameters [9]. The base BERT model
requires 6.9 billion floating-point operations to inference a 40-
word sentence, and this number increases to 20 billion when
translating a 20-word sentence using a base Seq2Seq model
[10]. The size of the parameter space and the computational
demands increase the cost of the training and inference for
BERT-like models, which requires the attention of the DL
community in order to accelerate these models.

To exploit hardware efficiency, DL frameworks adopt a
batching strategy, where multiple batches are executed con-
currently. Since batched execution requires task shapes in
different batches to be identical, DL frameworks presume
fixed-length inputs when designing the software [11]–[14].
However, this assumption cannot always hold, because trans-
former models are often faced with variable-length input
problems [8], [10]. In order to deploy models with variable-
length inputs directly to conventional frameworks that support
only fixed-length models, a straightforward solution is to pad
all sequences with zeros to the maximal sequence length.
However, this immediately brings in redundant computations
on wasted padded tokens. These padded zeros also introduce
significant memory overhead that can hinder a large trans-
former model from being efficiently deployed.

Existing popular DL frameworks, such as Google Tensor-
Flow with XLA [15], [16], Meta PyTorch with JIT [17], and
OctoML TVM [18], leverage the domain-specific just-in-time
compilation technique to boost performance. Another widely-
adopted strategy to generate low-level performance optimiza-
tion is delicate manual tuning: NVIDIA TensorRT [19], a DL
runtime, falls into this category. Yet all of these frameworks
require the input sequence lengths to be identical to exploit
the speedup of batch processing. To lift the restriction on
fixed sequence lengths, Tencent [10] and Baidu [8] provide
explicit support for models with variable sequence lengths.
They group sequences with similar lengths before launching
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batched kernels to minimize the padding overhead. However,
this proactive grouping approach still introduces irremovable
padding overhead when grouping and padding sequences with
similar yet different lengths.

In contrast to training processes that can be computed
offline, the inference stage of a serving system must be
processed online with low latency, which imposes high perfor-
mance requirements on DL frameworks. A highly efficient DL
inference framework for NLP models requires delicate kernel-
level optimizations and explicit end-to-end designs to avoid
wasted computations on zero tokens when handling variable-
length inputs. However, existing DL frameworks do not meet
these expectations. In order to remedy this deficit, we present
ByteTransformer, a highly efficient transformer framework
optimized for variable-length inputs in NLP problems. We not
only design an algorithm that frees the entire transformer of
padding when dealing with variable-length sequences, but also
provide a set of hand-tuned fused GPU kernels to minimize
the cost of accessing GPU global memory. More specifically,
our contributions include:

• We design and develop ByteTransformer, a high-
performance GPU-accelerated transformer optimized for
variable-length inputs. ByteTransformer has been de-
ployed to serve world-class applications including TikTok
and Douyin of ByteDance.

• We propose a padding-free algorithm that packs the input
tensor with variable-length sequences and calculates the
positioning offset vector for all transformer operations to
index, which keeps the whole transformer pipeline free
from padding and calculations on zero tokens.

• We propose a fused Multi-Head Attention (MHA) to
alleviate the memory overhead of the intermediate matrix,
which is quadratic to the sequence length, in MHA with-
out introducing redundant calculations due to padding
for variable-length inputs. Part of our fused MHA has
been deployed in the production code base of NVIDIA
CUTLASS.

• We hand-tune the memory footprints of layer normal-
ization, adding bias and activation to squeeze the final
performance of the system.

• We benchmark the performance of ByteTransformer on
an NVIDIA A100 GPU for forward pass of BERT-like
transformers, including BERT, ALBERT, DistilBERT,
and DeBERTa. Experimental results demonstrate our
fused MHA outperforms standard PyTorch attention by
6.13X. Regarding the end-to-end performance of standard
BERT transformer, ByteTransformer surpasses PyTorch,
TensorFlow, Tencent TurboTransformer, Microsoft Deep-
Speed and NVIDIA FasterTransformer by 87%, 131%,
138%, 74%, and 55%, respectively.

The rest of the paper is organized as follows: we introduce
background and related works in Section II, and then detail our
systematic optimization approach in Section III. Evaluation
results are given in Section IV. We conclude our paper and
present future work in Section V.

II. BACKGROUND AND RELATED WORKS

We provide an overview of the transformer model, including
its encoder-decoder architecture and multi-head attention layer.
We also survey related works on DL framework acceleration.

A. The transformer architecture

Fig. 1: The transformer architecture. [1]

Figure 1 shows the encoder-decoder model architecture of
the transformer. It consists of stacks of multiple encoder and
decoder layers. In an encoder layer, there is a multi-head
attention layer followed by a feed-forward network (FFN)
layer. A layer normalization (layernorm) operation is applied
after both MHA and FFN. In a decoder layer, there are two
sets of consecutive MHA layers and one FFN layer, and each
operation is normalized with a layernorm. The FFN is used
to improve the capacity of the model. In practice, FFN is
implemented by multiplying the tensor by a larger scaled
tensor using GEMM. Here we skip the embedding descriptions
in the figure, and refer an interested reader to [1] for details.
Although we show both encoder and decoder modules for
this transformer, a BERT transformer model only contains the
encoder section [2]. In this paper, we present optimizations
for BERT-like transformer models, which can be extended to
other transformers containing decoder sections.

Self-attention is a key module of the transformer architec-
ture. Conceptually, self-attention computes the significance of
each position of the input sequence, with the information from
other positions considered. A self-attention receives three input
tensors: query (Q), key (K), and value (V). Self-attention can
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be split into multiple heads. The Q and K tensors are first
multiplied (1st GEMM) to compute the dot product of the
query against all keys. This dot product is then scaled by the
hidden dimension dk and passed through a softmax function to
calculate the weights corresponding to the value tensor. Each
head of the output tensor is concatenated before going through
another linear layer by multiplying against tensor V (2nd

GEMM). Expressing self-attention as a mathematical formula,
we have:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)× V (1)

Whereas the formula of multi-head attention is:
Multihead(Q,K, V ) = Concat(headi, ..., headh), here
headi = Attention(Qi,Ki, Vi).

B. Related works on DL acceleration

Performance is a crucial aspect in the real-world deployment
of software systems, attracting significant attention across
various applications [20]–[22], including DL frameworks. The
conventional DL frameworks, such as PyTorch, TensorFlow,
TVM, and TensorRT are designed explicitly for fixed-length
input tensors. When dealing with NLP problems with variable-
length input, all sequences are padded to the maximal length,
which leads to significant wasted calculations on zero tokens.
A few DL frameworks, such as Tencent TurboTransformer
[10] and NVIDIA FasterTransformer [23], employ explicit
designs for variable-length inputs. TurboTransformer designs
run-time algorithms to group and pad sequences with similar
lengths to minimize the padding overhead. TurboTransformer
also uses a run-time memory scheduling strategy to improve
end-to-end performance. Kernel-level optimizations are of the
same significance as algorithmic optimizations. NVIDIA’s
FasterTransformer uses vendor-specific libraries such as Ten-
sorRT and cuBLAS [24] as its back-end, which provide
optimized implementations of various operations at the kernel
level.

Other end-to-end DL frameworks have also presented op-
timizations for BERT-like transformers, such as E.T. [25]
and DeepSpeed-Inference [26]. E.T. introduces a novel MHA
architecture for NVIDIA Volta GPUs and includes pruning
designs for end-to-end transformer models. In contrast, Byte-
Transformer targets unpruned models and is optimized for
NVIDIA Ampere GPUs. DeepSpeed-Inference is optimized
for large distributed models on multiple GPUs, while Byte-
Transformer currently focuses on lighter single-GPU models.

In addition to end-to-end performance acceleration, the
research community has also made focused efforts to improve
a key algorithm of the transformer, multi-head attention.
PyTorch provides a standard implementation of MHA [27].
NVIDIA TensorRT utilizes a fused MHA for short sequences
with lengths up to 512, as described in [28]. To handle
longer sequences, FlashAttention was proposed by Stanford
researchers in [29]. FlashAttention assigns the workload of a
whole attention unit to a single threadblock (CTA). However,
this approach can result in underutilization on wide GPUs

when there are not enough attention units assigned. Our fused
MHA, on the other hand, provides high performance for both
short and long sequences for variable-length inputs without
leading to performance degradation in small-batch scenarios.

TABLE I. Summarizing state-of-the-art transformers.

variable-len kernel fused kernel
support tuning MHA fusion

Tensorflow XLA no yes no no
PyTorch JIT no yes no no
FasterTransformer yes yes ≤ 512 no
TurboTransformer yes yes no partially
ByteTransformer yes yes yes yes

Table I surveys state-of-the-art transformers. TensorFlow
and PyTorch provide tuned kernels but require padding
for variable-length inputs. NVIDIA FasterTransformer and
Tencent TurboTransformer, although providing support for
variable-length inputs, do not perform comprehensive kernel
fusion or explicit optimization for the hot-spot algorithm
MHA for any length of sequence. In addition, TurboTrans-
former only optimizes part of the fusible operations in the
transformer model, such as layernorm and activation, namely
’partial kernel fusion’ in the table. Our ByteTransformer, in
contrast, starting with a systemic profiling to locate bottleneck
algorithms, precisely tunes a series of kernels including the key
algorithm MHA. We also propose a padding-free algorithm
which completely removes redundant calculations for variable-
length inputs from the entire transformer.

III. DESIGNS AND OPTIMIZATIONS

In this section, we present our algorithmic and kernel-level
optimizations to improve the end-to-end performance of BERT
transformer under variable-length inputs.

A. Math expression of BERT transformer encoder

Figure 2(a) illustrates the architecture of the transformer
encoder. The input tensor is first processed through the BERT
pipeline, where it is multiplied by a built-in attribute matrix
to perform Q, K, and V positioning encoding. This operation
can be implemented using three separate GEMM operations
or in batch mode. Realizing that the corresponding attribute
matrices to Q, K, and V are all the same shape (hidden dim x
hidden dim), we pack them to continuous memory space and
launch a single batched GEMM kernel that calculates Q, K,
and V to reduce the kernel launch overhead at runtime. Bias
matrices for Q, K, and V are then added to the encoded tensor,
which is passed through the self-attention module. In addition
to the multi-head attention module, the BERT transformer
encoder includes projection, feed forward network, and layer
normalization. The encoder pipeline can be represented as
a series of mathematical operations, including six GEMMs
(shown in light purple) and other memory-bound operations
(shown in light blue).
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Fig. 2: BERT transformer architecture and optimizations.

B. Profiling for single-layer standard BERT transformer

We implement the pipeline of Figure 2 (a) by calling
cuBLAS and profile its single-layer performance on an
NVIDIA A100 GPU. We adopt the standard BERT transformer
configuration (batch size: 16, head number: 12, head size: 64)
and profile for two different sequence lengths: 256 and 1024.

Figure 3 shows the performance breakdown for two se-
quence lengths. GEMM0 to GEMM3 refer to the consecutive four
GEMMs that are enumerated from GEMM #0 to GEMM #3
in Figure 2 (a). The other two batched GEMMs are part of the
attention module and are therefore profiled together with the
softmax as a whole, referred to as MHA in Figure 3. The two
sets of ”add bias and layernorm” operations are referred to
as layernorm0 and layernorm1. The profiling results show
that the compute-bound GEMM operations account for 61%
and 40% of the total execution time for both test cases. The
attention module, which includes a softmax and two batched
GEMMs, is the most time-consuming part of the transformer.
As the sequence length increases to that of a GPT-2 model
(1024), attention accounts for 49% of the total execution time,
while the remaining memory-bound operations (layernorm,
add bias and activation) only take up 11%-17%.

GEMM0
15%

Attention
22%

GEMM1
6%Layernorm0

5%

GEMM2
22%

Add BIAS & 
Gelu
7%

GEMM3
18%

Layernorm1
5%

(a) Sequence lengths 256

GEMM0
10%

Attention
49%

GEMM1
4%

Layernorm0
3%

GEMM2
13%

Add BIAS & 
Gelu
5%

GEMM3
13%

Layernorm1
3%

(b) Sequence lengths 1024

Fig. 3: Performance breakdown of forward BERT transformer.

C. Fusing memory-bound operations of BERT transformer

Since cuBLAS uses architectural-aware optimizations for
high performance GEMMs, presumably there remain limited
opportunities for further acceleration. Therefore, we turn our
eyes to optimizing the modules containing memory-bound
operations, such as attention (with softmax), feed forward
network (with layernorm) and add bias followed by element-
wise activation. We improve these operations by fusing distinct
kernels and reusing data in registers to reduce global memory
access. Figure 2 (b) presents the BERT transformer pipeline
with memory-bound kernel fusion, where we fuse layernorm
and activation with their consecutive kernels.

1) Add bias and layer normalization: These operations
account for 10% and 6% of the overall execution time for
sequence lengths 256 and 1024, respectively. After MHA,
the result tensor (valid word cnt× hidden dim) needs to
first be added upon the input tensor (bias) and perform layer
normalization. Here hidden dimension (hidden dim) equals
head num × head size. In standard BERT configuration,
head number and head size are fixed to 12 and 64. The naive
implementation introduces two rounds of memory access to
load and store the tensor. We provide a fused kernel that only
needs to access the global memory in one round to finish
both layernorm and adding bias. Kernel fusion for this sub-
kernel improves the performance by 61%, which accordingly
increases the single-layer BERT transformer performance by
3.2% for sequence lengths ranging 128 to 1024 in average.

2) add bias and activation: These operations account for
7% and 5% of the overall execution time for sequence lengths
256 and 1024, respectively. After the projection via matrix
multiplication, the result tensor will be added against the input
tensor and perform an element-wise activation using GELU
[30]. Our fused implementation, rather than storing the GEMM
output to global memory and loading it again to conduct
adding bias and activation, re-uses the GEMM result matrix
at the register level by implementing a customized and fused
CUTLASS [31] epilogue. Experimental results validate that
our fused GEMM perfectly hides the memory latency of bias
and GELU into GEMM. After this step, we further improve
the single-layer BERT transformer by 3.8%.

D. The zero padding algorithm for variable-length inputs

Because the real-time serving process receives sentences
with various words as input tensor, the sequence lengths can
often be different among batches. For such an input tensor
composed of sentences with variable lengths, the conventional
solution is to pad them to the maximal sequence length with
useless tokens, which leads to significant computational and
memory overhead. In order to address this issue, we propose
the zero padding algorithm to pack the input tensor and store
the positioning information for other transformer operations to
index the original sequences.

Figure 4 presents the details of the zero padding algorithm.
We use an input tensor with 3 sentences (proceeded in 3
batches) as an example. The longest sentence contains 5 word
tokens while the other two have 2 and 4 words. The height
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Fig. 4: The zero padding algorithm.

of the sample input tensor is 3, which is equal to the hidden
dimension. The conventional method is to pad all sentences to
the maximal sequence length by filling zeros. The elements,
either 1 or 0, of the mask matrix correspond respectively
to a valid token or a padded token of an input tensor with
variable size. By calculating the prefix sum of the mask
matrix, we can skip the padded tokens and provide the position
indices of all valid tokens. We implement an efficient CUDA
kernel to calculate the prefix sum and the position offset.
Each warp computes the prefix sum for tokens of a whole
sentence, so in total there are batch size warps assigned in
each threadblock for prefix sum calculation. Once the prefix
sum is computed, we pack the input tensor to a continuous
memory area so that the total number of words used in future
calculations is reduced from seq len × batch size to the
actual valid word count of the packed tensor.

Figure 2 (c) presents the detailed modifications on BERT
by introducing our zero padding algorithm. Before conducting
the positioning encoding, we calculate the prefix sum of
the mask matrix to pack the input tensor so that we avoid
computations on useless tokens in the first GEMM. Since
batched GEMM in MHA requires identical problem shapes
among different batches, we unpack the tensor before entering
the attention module. Once MHA is completed, we pack the
tensor again such that all remaining operations can benefit
from the zero padding algorithm. The final result tensors are
validated element-by-element against TensorFlow such that the
correctness and accuracy are ensured. It is worth mentioning
that padding and remove padding operations are fused with
existing memory-bound footprints such as adding bias and
transpose to minimize the overhead led by this feature.

Our presented padding-free algorithm is designed to ensure
semantic preservation. We maintain an array that stores the
mapping relationship of the valid tokens between the original

tensor and the packed tensor. The transformer operates on
the packed tensor, and intermediate operations, such as MHA,
layernorm and activation, refer to this position array to ensure
the correctness. At the end of each layer, we reconstruct the
output tensor according to the position array such that the
whole pipeline is semantic preserving.

Baseline Zero Padding Zero Padding + fused MHA
GEMM0 6mk2 6(α ·m)k2 6(α ·m)k2

MHA 4m
2

bs
k 4m

2

bs
k 4

(α·m)2

bs
k

GEMM1 2mk2 2(α ·m)k2 2(α ·m)k2

GEMM2 8mk2 8(α ·m)k2 8(α ·m)k2

GEMM3 8mk2 8(α ·m)k2 8(α ·m)k2

TABLE II. The computation number needed for variable-
length inputs, where average sequence length = α * maximum,
m denotes batch size · max seq len, k is denote hidden
dimension head num · head size, bs denotes the batch size.

Table II counts the floating point computations of a single-
layer BERT transformer. The computations of memory-bound
operations are not included since they are negligible compared
with the listed modules. Enabling the zero padding algorithm
eliminates redundant computations for all compute-intensive
modules other than MHA due to the restrictions of batched
GEMM. When the average sequence length is equal to 60%
of the maximum, turning on the zero padding algorithm further
accelerates the BERT transformer by 24.7%.

E. Optimizing multi-head attention

The zero-padding algorithm, although it effectively reduces
wasted calculations for variable-length inputs, cannot directly
benefit batched GEMM operations in MHA. This disadvantage
becomes increasingly significant when the sequence length
increases, as demonstrated in Table II. The complexity of
MHA is quadratic to the sequence length, while the complexity
of all other GEMMs is linear to the sequence length. This
motivates us to provide a high-performance fused MHA while
maintaining the benefits of the zero-padding algorithm. With
our fused MHA, attention no longer faces redundant calcula-
tions on useless tokens, as shown in Table II.

1) Unpadded fused MHA for short sequences: For short
input sequences, we hold the intermediate matrix in shared
memory and registers throughout the MHA computation kernel
to fully eliminate the quadratic memory overhead. We also
access Q, K, and V tensors according to the positioning
information obtained in the prefix sum calculation step to avoid
redundant calculations on padding zeros for the MHA module.

Algorithm III.1 shows the pseudo code of our fused
MHA for short sequences. We launch a 3-dimensional grid
map: {head num, seq len/split seq len, batch size}.
Here split seq len is a user-defined parameter to de-
termine the size of a sequence tile preceded by a thread-
block (typically set to 32 or 48). The warp count of
a threadblock is computed by the maximal sequence
length: split seq len/16 × (seq len/16). Each thread-
block loads a chunk of Q (split seq len × head size),
K (max seq len × head size) and V ((head size ×

5



Algorithm III.1: Unpadded fused MHA for short
sequences

1 /* define skew offset to avoid bank conflict */
2 #define SKEW_HALF 8
3 Shared memory:
4 __half s_kv [max_seq_len][size_per_head + SKEW_HALF];
5 __half s_query [split_seq_len][size_per_head +

SKEW_HALF];
6 __half s_logits [max_seq_len][size_per_head +

SKEW_HALF];
7 /* warps collaboratively fill s_query with adding bias fused */
8 Load __half2 q_bias
9 for seq id = warp id : warp num : split seq len do

10 query = Q[batch_seq_offset + seq_id +
thread_offset];

11 offset = seq_id*(head_size+SKEW_HALF)+(lane_id*2);
12 (__half2 *)s_query[offset] = fast_add(query,

k_bias);

13 /* warps collaboratively fill s_kv with adding bias fused */
14 Load __half2 k_bias
15 for seq id = warp id : warp num : batch seq len do
16 key = K[batch_seq_offset + seq_id +

thread_offset];
17 offset = seq_id*(head_size+SKEW_HALF)+(lane_id*2);
18 (__half2 *)s_kv[offset] = fast_add(key, k_bias);

19 /* compute Q*K using WMMA */
20 Clear wmma fragment QK to zero
21 for k id = 0 : head size / 16 do
22 Load 16x16 wmma fragments of Q
23 Load 16x16 wmma fragments of K
24 Update QK = Q * K + QK using wmma::mma_sync

25 Store fragment QK to s_logits using wmma::store_matrix_sync
26 /* Compute softmax */
27 for seq id = warp id : warp num : batch seq len do
28 float logits[max_seq_len];
29 each thread loads a whole sequence to fill local registers
30 /* 1st round of reduction with register-level data re-use*/
31 compute max_val in local registers
32 /* register-level data re-use*/
33 compute P = exp(P − max) and update local registers
34 /* 2st round of reduction with register-level data re-use*/
35 compute sum_val in local registers
36 /* register-level data re-use*/
37 compute P = P/sum val and stream to s_logits

38 /* warps collaboratively fill s_kv with adding bias fused */
39 Load __half2 v_bias
40 for seq id = warp id : warp num : batch seq len do
41 value = V[batch_seq_offset + seq_id +

thread_offset];
42 offset = seq_id*(head_size+SKEW_HALF)+(lane_id*2);
43 (__half2 *)s_kv[offset] = fast_add(value, v_bias);

44 /* Similar to Q * K so omitting the details here */
45 Compute P * V using wmma and stream to global memory

max seq len)) into shared memory and computes MHA for
a tile of the result tensor. We allocate three shared-memory
buffers to hold Q, K, V sub-matrices. Due to the algorithmic
nature of MHA, we can re-use K and V chunks in the same
shared-memory buffer s kv. The intermediate matrix of MHA
is held and re-used in another pre-allocated shared-memory
buffer s logits.

The workflow of fused MHA for short sequences is straight-
forward yet efficient. Each thread first loads its own tile of
Q and K into shared memory and computes GEMM for
P = Q × K. The element-wise adding bias and scaling
operations are both fused with the load process to hide the
memory latency. GEMM is computed using the CUDA wmma
intrinsic to leverage tensor cores of NVIDIA Ampere GPUs.
The intermediate matrix P is held in shared memory during

Fig. 5: Grouped GEMM demonstration.

the reduction. Because we explicitly design this algorithm for
short sequences, each thread can load a whole sequence of
P from shared memory into register files for both reduction
and element-wise exponential transform in softmax. Once the
softmax operation is completed, we load a K tile to shared
memory to compute the second GEMM O = P ×V , and then
store the result tensor O to the global memory.

2) Unpadded fused MHA for long sequences: Because of
the limited resources of register files and shared memory, the
previous fused MHA is no longer feasible for long sequences.
Therefore, we set 384 to be the cut-off sequence length and
propose a grouped GEMM based fused MHA for large models.

# of problems = batch sz * head num

Qi

Ki

Pi

Vi

OiPi

ith problem of of fused multihead attention

Max

Sum Sum

Max

fused element-wise ops

partial reduction full reduction
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Fig. 6: Grouped-GEMM-based FMHA. The prototype of our
fused MHA has been upstreamed to and released with CUT-
LASS 2.10. Source codes are available at [32].

The Grouped GEMM idea is first presented by NVIDIA
CUTLASS [31]. Different from batched GEMM, where all
GEMM sub-problems are required to have an identical shape,
grouped GEMM allows arbitrary shapes for sub-problems.
This is enabled by a built-in scheduler that iterates over
all GEMM sub-problems in a round-robin manner. Figure 5
demonstrates the idea of grouped GEMM using an example
with 3 sub-problems. Supposing 3 threadblocks (CTAs) are
launched, each CTA calculates a fix-sized CTA tile at each
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step until all GEMM sub-problems have been covered. GPU
computes in waves, logically. In the first wave, All three CTAs
calculate 3 tiles (light red, light yellow and light blue in the
figure). And then in the second CTA wave, CTA #0 moves to
the bottom-right tile of GEMM 0 while CTA #1 and CTA #2
move to sub-problems of GEMM 1. In the final CTA wave,
CTA #0 and CTA #1 continue to compute tasks in GEMM 1
and GEMM 2 while CTA #2 keeps idle because there are no
more available tiles in the computational graph.

Since grouped GEMM lifts the restriction on the shape
of sub-problems, it can directly benefit MHA problems with
variable-length inputs. Figure 6 presents our grouped-GEMM-
based fused MHA for long sequences. The total number
of MHA problems is equal to batch size × head num.
The MHA problems among different batches have different
sequence lengths, while sequence lengths within the same
batch are identical. The grouped GEMM scheduler iterates
over all attention units in a round-robin manner. In each
attention unit, we first compute GEMM Pi = Qi × Ki, and
conduct softmax on Pi. The second GEMM Oi = Pi × Vi
provides us with the final attention result. Here i indicates
the ith problem of grouped MHA with variable shapes. The
softmax operation is fused with GEMMs to hide the memory
latency. We have upstreamed the prototype of our grouped
GEMM based fused MHA into NVIDIA CUTLASS [32].

Fig. 7: Warp prefetching for grouped GEMM.

Grouped GEMM frequently checks with the built-in sched-
uler on the current task assignments, which leads to the
runtime overhead. To address this issue, we propose an opti-
mization over the built-in CUTLASS group GEMM scheduler.
Figure 7 shows our optimization for the original CUTLASS
grouped GEMM scheduler. Rather than asking one thread to
compute the current tasks metadata, we have all 32 threads
in a warp compute the tile indices to visit at one time.
Therefore, we achieve 32X fewer scheduler visit overhead.
In practice, this strategy brings a ∼10% improvement over
the original CUTLASS grouped GEMM for standard BERT
configurations. The prototype of this optimization has also
been upstreamed to NVIDIA CUTLASS. We would refer an
interested reader to [33] for detailed source codes.

In addition to optimizing the grouped GEMM scheduler,
we fuse the memory footprints of softmax into two grouped
GEMMs of MHA. Figure 8 shows the details of epilogue
fusion for softmax reduction. A CTA computes an MC ×NC

sub-matrix. MC and MC are both set to 128 to maximize
the performance of GEMM. Under the default CUTLASS
threadmap assignment, there are 128 threads per CTA, and

�C(MxN) NC

�MC

NC

MR�

kRows = MC / MR 

MR

NC

MRM

N / NC

...

    int half_thread_in_row = (kThreadsPerRow >> 1);
    CUTLASS_PRAGMA_UNROLL
    for (int i = half_thread_in_row; i > 0; i >>= 1) {
      float tmp = __shfl_xor_sync(0xFFFFFFFF, res_, i);
      res_ = reduce_op(res_, tmp);
    }

intra-warp reduction 
using warp shufflingMR

Fig. 8: Fused softmax reduction in grouped GEMM epilogue.

the threadmap is arranged as 8× 16, where each thread holds
a 128-bit register tile in each step. After the intra-thread
reduction, the MR × NC (8 × 128) sub-matrix is reduced
to 8 × 16, with one reduced result held by one thread. We
then conduct an intra-warp reduction to further reduce from
the column dimension, which is implemented via CUDA
warp shuffling for efficiency. Similar reductions (intra-thread
followed by intra-warp reduction) are performed to compute
both max and sum in epilogue. Once max and sum are both
reduced, we store them to global memory.

The reduction in epilogue only provides us with partial re-
duction within a threadblock because cross-threadblock com-
munication is impractical under the current CUDA program-
ming model. Hence, we need to launch a separated lightweight
kernel, as shown in Figure 6, to conduct the full reduction.
In partial reduction, the target tensor of each attention unit
is seq len × seq len while the full reduction just reduces
a seq len × seq len/128. Therefore, the workload of full
reduction is negligible to that of partial reduction In practice,
the full reduction kernel only accounts for ∼ 2% of total
execution time in fused MHA.

Once we have obtained the fully reduced max and sum
vectors, we are ready to proceed element-wise transform
exij−max

sum on the first GEMM’s output matrix. To hide the
memory latency, we fuse these element-wise operations into
the mainloop of the second GEMM. Algorithm III.2 presents
our modifications (marked in red) of the original CUTLASS
GEMM mainloop to enable softmax fusion. The original
GEMM mainloop adopts the pipelining strategy to alleviate
memory access latencies on both global memory and shared
memory. For shared memory accesses, double register tiles
are utilized to ensure that what is consumed in the current
iteration has always been loaded in the previous iteration.
For global memory accesses, a multi-stage loading strategy
is employed with the help of the cp.async instruction of
NVIDIA Ampere GPUs. The cp.async instruction allows
loading data asynchronously from global memory to shared
memory without consuming registers. Multiple such trans-
actions can be proceeded concurrently, and a stage barrier
ensures selected stages to be synchronized. The number of
load stages (kStages) is a compile-time constant defined by
a user. Similar to shared memory accesses, loading from global
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Algorithm III.2: Mainloop fusion of grouped FMHA
1 Register Tiles:
2 WarpLoadedFragmentA warp_loaded_frag_A[2];
3 WarpLoadedFragmentB warp_loaded_frag_B[2];
4 WarpLoadedFragmentNormSum warp_loaded_frag_norm_sum;
5 Shared memory: (kStages + 1) shared-memory tiles for A and B
6 /* prologue */
7 Load k-invariant fused softmax tile to warp_loaded_frag_norm_sum
8 Prefetch kStages - 1 tiles of A to shared memory using cp.async
9 Prefetch kStages - 1 tiles of B to shared memory using cp.async

10 Prefetch a tile of A from shared memory to warp_loaded_frag_A[0]
11 Prefetch a tile of B from shared memory to warp_loaded_frag_B[0]
12 /* fused element-wise operation */
13 /* A =

exp(A−max)
sum */

14 elementwise_transform(
15 warp_loaded_frag_A[0],
16 warp_loaded_frag_norm_sum);
17 /* mainloop */
18 for k to -kStages + 1 do
19 /* Computes a warp-level GEMM */
20 /* with pipelined load during iterations */
21 for warp_mma_k = 0 to kWarpGemmIterations - 1 do
22 Prefetch warp_loaded_frag_A[(warp_mma_k + 1) % 2]
23 Prefetch warp_loaded_frag_B[(warp_mma_k + 1) % 2]
24 /* fused element-wise transform */
25 elementwise_transform(
26 warp_loaded_frag_A[(warp_mma_k + 1) % 2],
27 warp_loaded_frag_norm_sum);
28 /* Computes a warp-level GEMM*/
29 /* on data loaded in previous iteration */
30 warp_mma(
31 accum,
32 warp_loaded_frag_A[warp_mma_k % 2],
33 warp_loaded_frag_B[warp_mma_k % 2],
34 accum);
35 Prefetch a tile of A to shared memory using cp.async
36 Prefetch a tile of B to shared memory using cp.async

memory is also pipelined to overlap memory latency with
computation. Therefore, kStages pieces of shared memory
buffers are needed under the multi-stage pipeline scheme.
As shown in Algorithm III.2, we preload the k-invariant
vectors sum and max in prologue, and conduct element-
wise transform right after the matrix elements are loaded into
registers. Since the fused vectors are loaded outside of the
GEMM mainloop, only negligible overhead is brought into the
baseline GEMM and the memory latency to perform element-
wise transform is perfectly hidden with GEMM computations.

The baseline MHA is a computational chain containing
a batched GEMM, a softmax, and another batched GEMM.
The time and memory complexity of all these operations are
quadratic in the sequence length. Because the padding-free
algorithm directly reduces the effective sequence length, MHA
with variable-length input also gains a direct improvement.
Our fused MHA, which is explicitly designed to handle
both short and long sequences, incorporates the padding-free
algorithm to alleviate the memory overhead of the intermediate
matrix in MHA caused by padding for variable-length inputs.
Our highly optimized MHA outperforms the standard PyTorch
MHA by 6.13X and further accelerates the single-layer BERT
transformer by 19% compared to the previous step. As a
result, this fully optimized version surpasses the baseline
implementation in Figure 2 (a) by 60%. Since the remaining
operations of a forward BERT transformer are all near-optimal
GEMM operations, we conclude our optimizations at this step.

IV. EVALUATION

We evaluate our optimizations on an NVIDIA A100 GPU.
The GPU device is connected to a node with four 32-core Intel
Xeon Platinum 8336C CPUs, whose boost frequency is up to
4.00 GHz. The associated CPU main memory system has a
capacity of 2TB at 3200 MHz. We compile programs using
CUDA 11.6u2 with the optimization flag O3. We compare
the performance of ByteTransformer with latest versions of
state-of-the-art transformers, such as TensorFlow 2.8, PyTorch
1.13, Tencent TurboTransformer 0.5.1, Microsoft DeepSpeed-
Inference 0.7.7, and NVIDIA FasterTransformer 5.1. All the
tensors benchmarked in this paper, unless specified, are in the
half-precision floating-point format (FP16) to leverage tensor
cores of NVIDIA GPUs. The variable sequence lengths in this
section are generated randomly based on a uniform distribution
with a range from 1 to the maximum length. We average
the reported performance data over tens of runs to minimize
fluctuations.

A. Kernel fusion for layernorm and add-bias operations

As depicted in Figure 2, BERT transformer is composed of a
series of GEMM and memory-bound operations. Since GEMM
are accelerated by near-optimal vendor’s libraries cuBLAS and
CUTLASS, we focus on optimizing the functional modules
that involve memory-bound operations.
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Fig. 9: Kernel fusion for add-bias and layernorm on a
(batch size · seq len) × hidden dim tensor. Here we
profile for 16 batches with the hidden dimension fixed to 768
under the standard BERT configuration.

The result tensor needs to be added by the input tensor
and normalized after projection and feed forward network
of BERT transformer. Rather than launching two separated
kernels, we fuse them into a single kernel and re-use data at the
register level. In addition to kernel fusion, we leverage FP16
SIMD2 to increase the computational throughput of layernorm
by assigning more workload to each thread. We normalize the
execution time by that of the optimized layernorm and present
the results in Figure 9: the improved version with kernel fusion
provides us with a 69% improvement on average over the
unfused baseline for sequence lengths ranging 128 to 1024.
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Fig. 10: Kernel fusion for GEMM, add-bias, and GELU. The
shape of output tensor is (batch size · seq len)× (scale ·
hidden dim). Here we profile for 16 batches with the hidden
dimension and the scale factor fixed to 768 and 4 under the
standard BERT configuration.

B. Kernel fusion for GEMM and add-bias & activation

Regarding the GEMM, add-bias and activation pattern in
BERT transformer, we also provide a fused kernel to reduce
the global memory access. An unfused implementation is to
call vendor’s GEMM, store the output to global memory, and
then load the result matrix from global memory for further
element-wise operations. In our optimized version, when the
result matrix of GEMM is held in registers, we conduct fused
element-wise operations that re-use data at the register level.
Once the element-wise transform (add-bias and GELU) is
completed, we then store the results to the global memory.
Figure 10 compares the performance of fused and unfused
versions. In each clustered bar plot, the detailed execution time
breakdown of the unfused implementation, normalized by the
fused execution time (shown in the left bars), is shown in the
stacked bar on the right. By fusing element-wise operations
into the GEMM epilogue, we improve the performance by
24% on average for sequence lengths ranging 128 to 1024.
It is worth mentioning that we feed packed tensors into both
fused and non-fused kernels, such that the performance gain
in Sec IV A and B are solely from kernel fusion.

C. Optimizing multi-head attention

Figure 3 shows that MHA accounts for 22% - 49% of the
total execution time. We optimize this key algorithm by fusing
softmax into GEMMs without calculating for useless padded
tokens under variable-length inputs. For short sequences, we
hold the intermediate matrix in registers and shared mem-
ory. For long sequences, we adopt a grouped GEMM based
fused MHA and fuse softmax operations into our customized
GEMM epilogue and mainloop to hide the memory latency. In
both implementations, the input matrices are accessed accord-
ing to the position information obtained from the zero padding
algorithm so that no redundant calculations are introduced.

Figure 11 compares the MHA performance for sequences
shorter than 384. Here cuBLAS denotes the unfused im-
plementation that calls cuBLAS for batched GEMM. The
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Fig. 11: Fused MHA for short sequences.

softmax operation between two batched GEMM can benefit
from the zero padding algorithm, by only accessing unpadded
tokens according to the known indices. This variant is denoted
as cuBLAS + zero padding in the figure. cuBLAS batched
GEMM improves the performance over stand PyTorch MHA
by 5 folds while enabling the zero padding algorithm for
softmax further improves the performance by 9%. Our MHA
fully fuses the softmax and two batched GEMMs into one
kernel, resulting in average speedups of 617%, 42%, and 30%
over all three variants for variable sequence lengths ranging
from 64 to 384.
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Fig. 12: Fused MHA for long sequences.

Figure 12 compares the performance of the MHA for se-
quences longer than 448. The cuBLAS batched GEMM triples
the MHA performance over PyTorch, while eliminating wasted
calculations in softmax further brings a 17% improvement.
By introducing the high-performance grouped GEMM and
fusing softmax into GEMMs, our fused MHA outperforms
the variant MHA implementations by 451%, 110% and 79%
for maximal sequence lengths ranging 448 to 1024, where the
average sequence length is 60% of the maximum.

Figure 13 compares the scaled execution time of the FMHA
module of our ByteTransformer against FlashAttention under
the standard BERT setup. As shown in the figure, our FMHA
presents advantages for small batch sizes (101% faster on
average) while FlashAttention becomes more efficient for

9



0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1
2

8

2
5

6

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

1
2

8

2
5

6

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

Batch Size = 1 Batch Size = 16

Sc
al

e
d

 E
xe

cu
ti

o
n

 T
im

e

Max Sequence Length
Average = 0.6 * max;

Head Size = 64, Head Number = 12

FlashAttention

Our FMHA

Fig. 13: Comparisons of our FMHA with FlashAttention.

large batch sizes (59% faster on average). This is because
FlashAttention maps a whole attention unit to a threadblock,
which, although allows for the complete preservation of the
intermediate matrix of an attention unit within shared-memory
for any sequence length, results in performance degradation
when there are insufficient tasks assigned.

D. Benchmarking single-layer BERT transformer with step-
wise optimizations

Figure 14 compares the performance of a single-layer BERT
transformer to reflect our step-wise optimizations. At each
step, we add a new optimization upon the previous variant.
The baseline transformer implements the workflow in Figure
2 (a) with padding. We then enable kernel fusion for adding
bias and layernorm, which corresponds to layernorm fusion
in the figure. The next step is to fuse adding bias and GELU
into GEMM, denoted by add bias & GELU fusion. In order to
avoid calculating padded tokens for the variable-length inputs,
we further propose the zero padding algorithm as shown in
Figure 2 (c). This is denoted by rm padding in the figure. Our
optimized transformer includes our high-performance fused
MHA, as well as all previous optimizations.
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Fig. 14: Single-layer BERT transformer with step-wise opti-
mizations. Each variant includes all previous optimizations.

Fusing adding bias and layernorm into one kernel improves
the performance by 3.2%. Fusing adding bias and activation
into GEMM epilogue further improves the performance by
3.8%. These two optimizations together improve the overall
performance by 7.1%. After bringing in the zero padding algo-
rithm, the redundant calculations are eliminated in most mod-
ules other than MHA. We observe a 24% improvement from
the previous step. Finally, our fused MHA removes wasted
calculations on padded tokens and enables an additional 20%
improvement. To summarize, the final version achieves 60%
improvement over the baseline version on single-layer BERT.

TABLE III. Single-layer BERT versus E.T. on A100.

Sequence Length E.T. (ms) ByteTransformer (ms) Speedup

256 0.25 0.07 3.57×
1024 1.04 0.09 11.56×

Table III compares the execution time for a single-layer,
non-pruned BERT (batch size = 1) between E.T. and Byte-
Transformer, as E.T. has only open-sourced its single-layer,
single-batch prototype. We achieve a speed-up of up to 11
times over E.T., which is optimized specifically for pruned
models on legacy Volta GPUs. Since a pruned model can lead
to significant reduction in total computations but with possible
accuracy trade-offs, we do not include E.T. in our further end-
to-end performance evaluations for non-pruned models on an
A100 GPU for fairness and comparability.

E. Benchmarking end-to-end performance of BERT

The standard BERT transformer is a stacked structure of
12 layers of the encoder module. The output of each encoder
module is utilized as an input tensor in the next iteration. Fig-
ure 15 shows the end-to-end performance of ByteTransformer
and compares it against state-of-the-art transformer implemen-
tations: PyTorch with JIT, TensorFlow with XLA acceleration,
Micorsoft DeepSpeed-Inference, NVIDIA FasterTransformer
and Tencent TurboTransformer. We adopt the standard BERT
transformer configuration for end-to-end benchmark: 12 heads,
head size equal to 64 and 12 iterations (layers). We benchmark
for cases whose batch sizes are equal to 1, 8 and 16 and change
sequence lengths from 64 to 1024.

Compared with popular DL frameworks PyTorch, Tensor-
Flow, and Microsoft DeepSpeed-Inference, our ByteTrans-
former achieves 87%, 131%, and 74% faster end-to-end
performance on average. When benchmarking Tencent Tur-
boTransformer, we turn on its SmartBatch mode to reach
optimal batching performance. Since TurboTransformer only
supports sequence lengths smaller than or equal to 512, we do
not benchmark longer sequences for it. TurboTransformer re-
groups and pads similar sequences into a batch so it launches
excessive kernels at the run-time. It is faced with significant
performance degradation for models with large batch numbers
and sequence lengths. NVIDIA FasterTransformer, although it
supports long sequences regarding the functionality, its back-
end TensorRT fused MHA cannot be scaled to long sequences
due to the limited register, its end-to-end efficiency cannot
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Fig. 15: End-to-end benchmark for standard BERT trans-
former, head size = 64, head number = 12, layer = 12, average
sequence length = 0.6 * max sequence length.

be maintained when the sequence length becomes longer than
512. Experimental results in Figure 15 show that ByteTrans-
former outperforms TurboTransformer and FasterTransformer
by 138% and 55% on average, respectively.

Figure 15 (c) further includes the end-to-end performance
of ByteTransformer for average-to-maximum sequence length
ratios ranging from 0.1 to 1.0. The upper dashed blue line
represents the execution time of ByteTransformer at a ratio
of 1.0, while the lower dashed line corresponds to a ratio of
0.1. Our padding-free algorithm reduces the runtime by up to
66% for a ratio of 0.1 compared to a fixed-sequence-length
input. When disabling the support for variable-length inputs
of FasterTransformer, as shown by the dashed green lines in
Figure 15, we observe a moderate decrease in performance for

larger batch sizes (batch sizes = 8 and 16) but an improvement
in performance for a small batch size (batch size = 1). In con-
trast, our FMHA-enabled padding-free algorithm significantly
improves the performance of the end-to-end BERT transformer
for variable-length input with an average-to-maximum ratio
of 0.6, outpacing NVIDIA FasterTransformer by a notable
difference of 54% to 16%.

TABLE IV. Configurations of other BERT-like transformers.

Model layer number head number head size

ALBERT 12 16 64
DistilBERT 6 12 64
DeBERTa 12 12 64

F. Extending to other BERT-like transformers

We extend the optimizations on kernel fusion and the
padding-free algorithm presented in our work to other BERT-
like transformers, including ALBERT, DistilBERT, and De-
BERTa. Table IV summarizes the model configurations, and
readers can refer to [34]–[36] for more detailed information
about their architectures. Figure 16 compares the performance
of the ByteTransformer with state-of-the-art DL frameworks
under these models. Following the setup for our demonstrated
standard BERT benchmarks, the average sequence length is
set to 60% of the maximal sequence length. TurboTransfomer
only supports sequences shorter than 512, so its performance
data for long sequences are not presented. FasterTransformer
and TurboTransformer do not support DeBERTa, so their
results are not included in that model. It is worth noting that
TensorFlow encountered an out-of-memory error for sequence
length 1024 in the DeBERTa model, resulting in this data point
being excluded. For ALBERT and DistilBERT, our ByteTrans-
former on average outperforms PyTorch, TensorFlow, Ten-
cent TurboTransformer, DeepSpeed-Inference, and NVIDIA
FasterTransformer by 98%, 158%, 256%, 93%, and 53%,
respectively. For the DeBERTa model, our ByteTransformer
outperforms PyTorch, TensorFlow, and DeepSpeed by 44%,
243%, and 74%, respectively.
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V. CONCLUSIONS

We have presented ByteTransformer, a high-performance
transformer optimized for variable-length sequences. Byte-
Transformer not only brings algorithmic level innovation that
frees the transformer from padding overhead, but also incorpo-
rates architecture-aware optimizations to accelerate function-
ing modules of the transformer. Our optimized fused MHA, as
well as other step-wise optimizations, together provide us with
significant speedup over current state-of-the-art transformers.
The end-to-end performance of the standard BERT transformer
benchmarked on an NVIDIA A100 GPU demonstrates that our
ByteTransformer surpasses PyTorch, TensorFlow, Tencent Tur-
boTransformer, Microsoft DeepSpeed-Inference, and NVIDIA
FasterTransformer by 87%, 131%, 138%, 74% and 55%,
respectively. Moreover, we have shown that our optimizations
are not specific to BERT, but can be applied to other BERT-like
transformers, including ALBERT, DistilBERT, and DeBERTa.
We are striving to make ByteTransformer completely open-
source. This will allow the wider research community to
benefit from our optimized implementation and to continue
advancing the field. We are also dedicated to further expanding
the presented strategies to accelerate a wider range of BERT-
like transformer models, both in inference and training.
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